• Title/Summary/Keyword: School buildings

Search Result 1,664, Processing Time 0.03 seconds

Identification of Free-Living Amoebas in Tap Water of Buildings with Storage Tanks in Korea

  • Lee, Da-In;Park, Sung Hee;Baek, Jong Hwan;Yoon, Jee Won;Jin, Soo Im;Han, Kwang Eon;Yu, Hak Sun
    • Parasites, Hosts and Diseases
    • /
    • v.58 no.2
    • /
    • pp.191-194
    • /
    • 2020
  • Free-living amoebas (FLAs) can cause severe disease in humans and animals when they become infected. However, there are no accurate survey reports on the prevalence of FLAs in Korea. In this study, we collected 163 tap water samples from buildings, apartments, and restrooms of highway service areas in 7 Korean provinces with high population density. All these buildings and facilities have water storage tanks in common. The survey was separated into categories of buildings, apartments, and highway service areas. Five hundred milliliters of tap water from each building was collected and filtered with 0.2 ㎛ pore filter paper. The filters were incubated in agar plates with heated E. coli at 25℃. After axenization, genomic DNA was collected from each FLA, and species classification was performed using partial 18S-rDNA PCR-sequencing analysis. We found that 12.9% of tap water from buildings with storage tanks in Korea was contaminated with FLAs. The highway service areas had the highest contamination rate at 33.3%. All of the FLAs, except one, were genetically similar to Vermamoeba vermiformis (Hartmannella vermiformis). The remaining FLA (KFA21) was very similar to Acanthamoeba lugdunensis (KA/E26). Although cases of human infection by V. vermiformis are very rare, we must pay attention to the fact that one-third of tap water supplies in highway service areas have been contaminated.

Response Modification Factors for Seismic Performance Evaluation of Non-seismic School Buildings with Partial Masonry Infills (조적허리벽이 있는 비내진 학교시설의 내진성능평가를 위한 반응수정계수)

  • Kim, Beom Seok;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.71-82
    • /
    • 2019
  • Most school buildings consist of reinforced concrete (RC) moment frames with masonry infills. The longitudinal direction frames of those school buildings are relatively weak due to the short-column effects caused by the partial masonry infills and need to be evaluated carefully. In 'Manual for Seismic Performance Evaluation and Retrofit of School Facilities' published in 2018, response modification factor of 2.5 is applied to non-seismic RC moment frames with partial masonry infills, but sufficient verification of the factor has not been reported yet. Therefore, this study conducted seismic performance evaluation of planar RC moment frames with partial masonry infills in accordance with both linear analysis and nonlinear static analysis procedures presented in the manual. The evaluation results from the different procedures are compared in terms of assessed performance levels and number of members not meeting target performance objectives. Finally, appropriate response modification factors are proposed with respect to a shear-controlled column ratio.

Diagrid Systems for Structural Design of Complex-Shaped Tall Buildings

  • Moon, Kyoung Sun
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.4
    • /
    • pp.243-250
    • /
    • 2016
  • Today's architectural design trend based on the recognition of pluralism has led to multiple design directions for all building types including tall buildings. This contemporary design trend has produced many complex-shaped tall buildings, such as twisted, tilted, tapered and freeform towers. Among many different structural systems developed for tall buildings, the diagrid system, with its powerful structural rationale and distinguished aesthetic potential, is one of the most widely used systems for today's tall buildings. This paper studies structural performance of diagrid systems employed for complex-shaped tall buildings. Twisted, tilted, tapered and freeform tall buildings are designed with diagrid structures, and their structural performances are investigated. For the twisted diagrid study, the buildings are twisted up to 3 degrees per floor. In the tilted diagrid study, the angles of tilting range from 0 to 13 degrees. The impact of eccentricity is investigated for gravity as well as lateral loads in tilted towers. In the study of tapered diagrid structures, the angles of tapering range from 0 to 3 degrees. In the study of freeform diagrid structures, lateral stiffness of freeform diagrids is evaluated depending on the degree of fluctuation of free form. The freeform floor plans fluctuate from plus/minus 1.5 meter to plus/minus 4.5 meter boundaries of the original square floor plan. Parametric structural models are generated using appropriate computer programs and the models are exported to structural engineering software for design, analyses and comparative studies.

Field Study of Emission Characteristics of Ammonia and Hydrogen Sulfide by Pig Building Types (돈사 작업장 유형에 따른 암모니아와 황화수소의 실내농도 및 발생량에 관한 현장 조사)

  • Kim, Ki Youn;Park, Jae Beom;Kim, Chi-Nyon;Lee, Kyung Jong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.1
    • /
    • pp.36-43
    • /
    • 2006
  • The principal aim of this field study was to determine the concentrations and emissions of gaseous contaminants such as ammonia and hydrogen sulfide in the different types of pig buildings in Korea and allow objective comparison between Korea and the other countries in terms of pig housing types. This field study was performed from May to June and from September to October in 2002. Pig buildings investigated in this research were selected in terms of three criteria; manure removal system, ventilation mode and growth stage of pig. Measurements of concentration and emission of ammonia and hydrogen sulfide in the pig buildings were done in 5 housing types and the visited farms were 15 sites per each housing type. Concentrations of ammonia and hydrogen sulfide were measured at three locations of the central alley in the pig building and emission rates of them were estimated by multiplying the average concentration($mg/m^3$) measured near the air outlet by the mean ventilation rate($m^3/h$) and expressed either per pig of liveweight 75kg(mg/h/pig) or per area($mg/h/m^2$). Concentrations of ammonia and hydrogen sulfide in the pig buildings were averaged to 7.5 ppm and 286.5 ppb and ranged from 0.8 to 21.4 ppm and from 45.8 to 1,235 ppb, respectively. The highest concentrations of ammonia and hydrogen sulfide were found in the mechanically ventilated buildings with slats; 12.1 ppm and 612.8 ppb, while the lowest concentrations of ammonia and hydrogen sulfide were found in the pig buildings with deep-litter bed system(2.2 ppm) and the naturally ventilated pig buildings with manure removal system by scraper(115.2 ppb), respectively(p<0.05). All the pig buildings were investigated not to exceed the threshold limit values(TLVs) of ammonia(25 ppm) and hydrogen sulfide(10 ppm). The mean emissions of ammonia and hydrogen sulfide per pig(75kg in terms of liveweight) and area($m^2$) from pig buildings were 250.2 mg/h/pig and 37.8 mg/h/pig and $336.3mg/h/m^2$ and $50.9mg/h/m^2$, respectively. The pig buildings with deep-litter bed system showed the lowest emissions of ammonia and hydrogen sulfide(p<0.05). However, the emissions of ammonia and hydrogen sulfide from the other pig buildings were not significantly different(p>0.05). Concentrations and emissions of ammonia and hydrogen sulfide were relatively higher in the pig buildings managed with deep-pit manure system with slats and mechanical ventilation mode than the different pig housing types. In order to prevent pig farm workers from adverse health effect caused by exposure to ammonia and hydrogen sulfide in pig buildings, they should wear the respirators during shift and be educated sustainably for the guideline related to occupational safety.

A Research on the Actual Condition of Passive Solar School Buildings (자연형 태양열 학교의 실태 조사 연구)

  • Lim, S.H.;Jeon, H.S.;Auh, P.C.;Lee, N.H.
    • Solar Energy
    • /
    • v.10 no.3
    • /
    • pp.66-78
    • /
    • 1990
  • The purpose of this study is to provide materials necessary for planning and designing of passive solar school buildings by comparing and analyzing the satisfaction degree on old passive solar school building environment characteristics according to the school building pattern. In conclusion, passive solar systems are effective and economical when they are applied to school buildings for heating systems.

  • PDF

Natural time period equations for moment resisting reinforced concrete structures comprising hollow sections

  • Prajapati, Satya Sundar;Far, Harry;Aghayarzadeh, Mehdi
    • Computers and Concrete
    • /
    • v.26 no.4
    • /
    • pp.317-325
    • /
    • 2020
  • A precise estimation of the natural time period of buildings improves design quality, causes a significant reduction of the buildings' weight, and eventually leads to a cost-effective design. In this study, in order to optimise the reinforced concrete frames design, some symmetrical and unsymmetrical buildings composed of solid and hollow members have been simulated using finite element software SAP 2000. In numerical models, different parameters such as overturning moment, story drift, deflection, base reactions, and stiffness of the buildings were investigated and the results have been compared with strength and serviceability limit criteria proposed by Australian Standard (AS 3600 2018). Comparing the results of the numerical modelling with existing standards and performing a cost analysis proved the merits of hollow box sections compared to solid sections. Finally, based on numerical simulation results, two equations for natural time period of moment resisting reinforced concrete buildings have been presented. Both derived equations reflected higher degree of correlation and reliability with different complexities of building when compared with existing standards and relationships provided by other scholars. Therefore, these equations will assist practicing engineers to predict elastic behaivour of structures more precisely.

Effects of Flush-out in the Reduction of Formaldehyde in Newly Built Residential Buildings (신축 공동주택에서 플러쉬아웃에 따른 폼알데하이드 농도 저감 효과에 관한 연구)

  • Park, Sang In;Kim, Joo Han;Park, J.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.3
    • /
    • pp.116-122
    • /
    • 2018
  • The purpose of this study was to confirm the effects of flush-out in the reduction of formaldehyde concentration in newly built residential buildings. The field measurements were conducted on two complexes of multi-residential buildings which are located in the suburban area of Seoul. About eight samples of residential buildings were selected to measure the changes in formaldehyde concentrations after flush-out from the two apartment complexes. The concentration of formaldehyde was measured using DNPH cartridge and HPLC. From the results of the field measurements, it was established that indoor formaldehyde concentration decreases 27.6~54.2% in the samples after flush-out. The number of days that the flush-out were conducted was noted to have no significant influence on the reduction rate of formaldehyde concentration when the flush-out continued more than 7 days. The comparison with Bake-out showed that flush-out also can reduce formaldehyde in newly built buildings as same levels of it.

Optimization of Sky-Bridge location at coupled high-rise buildings considering seismic vulnerability functions

  • Arada, Ahmad Housam;Ozturk, Baki;Kassem, Moustafa Moufid;Nazri, Fadzli Mohamed;Tan, Chee Ghuan
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.385-400
    • /
    • 2022
  • Sky-bridges between adjacent buildings can enhance lateral stiffness and limit the impact of lateral forces. This study analysed the structural capabilities and dynamic performances of sky-bridge-coupled buildings under various sets of ground motions. Finite Element (FE) analyses were carried out with the link being iteratively repositioned along the full height of the structures. Incremental dynamic analysis (IDA) and probabilistic damage distribution were also applied. The results indicated that the establishment of sky-bridges caused a slight change in the natural frequency and mode shapes. The sky-bridge system was shown to be efficient in controlling displacement and Inter-Storey Drift Ratio (%ISDR) and reducing the probability of damage in the higher floors. The most efficient location of the sky-bridge, for improving its rigidity, was found to be at 88% of the building height. Finally, the effects of two types of materials (steel and concrete) and end conditions (hinged and fixed) were studied. The outcomes showed that coupled buildings with a sky-bridge made of steel with hinged connection could withstand ground motions longer than those made of concrete with fixed connection.

Developments of Structural Systems Toward Mile-High Towers

  • Moon, Kyoung Sun
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.3
    • /
    • pp.197-214
    • /
    • 2018
  • Tall buildings which began from about 40 m tall office towers in the late $19^{th}$ century have evolved into mixed-use megatall towers over 800 m. It is expected that even mile-high towers will soon no longer be a dream. Structural systems have always been one of the most fundamental technologies for the dramatic developments of tall buildings. This paper presents structural systems employed for the world's tallest buildings of different periods since the emergence of supertall buildings in the early 1930s. Further, structural systems used for today's extremely tall buildings over 500 m, such as core-outrigger, braced mega-tube, mixed, and buttressed core systems, are reviewed and their performances are studied. Finally, this paper investigates the potential of superframed conjoined towers as a viable structural and architectural solution for mile-high and even taller towers in the future.

Outrigger Systems for Structural Design of Complex-Shaped Tall Buildings

  • Moon, Kyoung Sun
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.1
    • /
    • pp.13-20
    • /
    • 2016
  • Today's architecture can be best understood only through the recognition of pluralism, and, as is true of other building types, multiple design directions are prevalent for tall buildings. This contemporary design trend has produced many complex-shaped tall buildings, such as twisted, tilted and tapered form towers. Among many different structural systems developed for tall buildings, the outrigger system, with its inherent structural efficiency and flexibility in façade design, is widely used for contemporary tall buildings. This paper studies structural performance of outrigger systems employed for complex-shaped tall buildings. Twisted, tilted and tapered tall buildings are designed with outrigger structures, and their structural performance is investigated. For the twisted outrigger study, the buildings are twisted up to 3 degrees per floor. In the tilted outrigger study, the angles of tilting range from 0 to 13 degrees. The impact of eccentricity is investigated for gravity as well as lateral loads in tilted towers. In the study of tapered outrigger structures, the angles of tapering range from 0 to 3 degrees. Parametric structural models are generated using appropriate computer programs for these studies, and the models are exported to structural engineering software for design and analyses.