• Title/Summary/Keyword: Scheduling System

Search Result 2,160, Processing Time 0.036 seconds

An Improved Ant Colony System for Parallel-Machine Scheduling Problem with Job Release Times and Sequence-Dependent Setup Times (작업투입시점과 순서의존적인 준비시간이 존재하는 병렬기계 일정계획을 위한 개선 개미군집 시스템)

  • Joo, Cheol-Min
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.35 no.4
    • /
    • pp.218-225
    • /
    • 2009
  • This paper considers a parallel-machine scheduling problem with job release times and sequence-dependent setup times. The objective of this problem is to determine the allocation policy of jobs and the scheduling policy of machines so as to minimize the weighted sum of setup times, delay times, and tardy times. A mathematical model for optimal solution is derived and a meta heuristic algorithm based on the improved ant colony system is proposed in this paper. The performance of the meta heuristic algorithm is evaluated through compare with optimal solutions using randomly generated several examples.

Performance Evaluation of the VoIP Services of the Cognitive Radio System, Based on DTMC

  • Habiba, Ummy;Islam, Md. Imdadul;Amin, M.R.
    • Journal of Information Processing Systems
    • /
    • v.10 no.1
    • /
    • pp.119-131
    • /
    • 2014
  • In recent literature on traffic scheduling, the combination of the two-dimensional discrete-time Markov chain (DTMC) and the Markov modulated Poisson process (MMPP) is used to analyze the capacity of VoIP traffic in the cognitive radio system. The performance of the cognitive radio system solely depends on the accuracy of spectrum sensing techniques, the minimization of false alarms, and the scheduling of traffic channels. In this paper, we only emphasize the scheduling of traffic channels (i.e., traffic handling techniques for the primary user [PU] and the secondary user [SU]). We consider the following three different traffic models: the cross-layer analytical model, M/G/1(m) traffic, and the IEEE 802.16e/m scheduling approach to evaluate the performance of the VoIP services of the cognitive radio system from the context of blocking probability and throughput.

Flexible Maintenance Scheduling of Generation System by Multi-Probabilistic Reliability Criterion in Korea Power System

  • Park, Jeong-Je;Choi, Jae-Seok;Baek, Ung-Ki;Cha, Jun-Min;Lee, Kwang-Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.8-15
    • /
    • 2010
  • A new technique using a search method which is based on fuzzy multi-criteria function is proposed for GMS(generator maintenance scheduling) in order to consider multi-objective function. Not only minimization of probabilistic production cost but also maximization of system reliability level are considered for fuzzy multi-criteria function. To obtain an optimal solution for generator maintenance scheduling under fuzzy environment, fuzzy multi-criteria relaxation method(fuzzy search method) is used. The practicality and effectiveness of the proposed approach are demonstrated by simulation studies for a real size power system model in Korea in 2010.

A Log Analysis System with REST Web Services for Desktop Grids and its Application to Resource Group-based Task Scheduling

  • Gil, Joon-Min;Kim, Mi-Hye
    • Journal of Information Processing Systems
    • /
    • v.7 no.4
    • /
    • pp.707-716
    • /
    • 2011
  • It is important that desktop grids should be able to aggressively deal with the dynamic properties that arise from the volatility and heterogeneity of resources. Therefore, it is required that task scheduling be able to positively consider the execution behavior that is characterized by an individual resource. In this paper, we implement a log analysis system with REST web services, which can analyze the execution behavior by utilizing the actual log data of desktop grid systems. To verify the log analysis system, we conducted simulations and showed that the resource group-based task scheduling, based on the analysis of the execution behavior, offers a faster turnaround time than the existing one even if few resources are used.

Resource Constrained Dynamic Multi-Projects Scheduling Based by Constraint Programming (Constraint Programming을 이용한 자원제약 동적 다중프로젝트 일정계획)

  • Lee, Hwa-Ki;Chung, Je-Won
    • IE interfaces
    • /
    • v.12 no.3
    • /
    • pp.362-373
    • /
    • 1999
  • Resource Constrained Dynamic Multi-Projects Scheduling (RCDMPS) is intended to schedule activities of two or more projects sequentially arriving at die shop under restricted resources. The aim of this paper is to develop a new problem solving method for RCDMPS to make an effect schedule based by constraint programming. The constraint-based scheduling method employs ILOG Solver which is C++ constraint reasoning library for solving complex resource management problems and ILOG Schedule which is a add-on library to ILOG Solver dedicated to solving scheduling problems. And this method interfaces with ILOG Views so that the result of scheduling displays with Gantt chart. The scheduling method suggested in this paper was applied to a company scheduling problem and compared with the other heuristic methods, and then it shows that the new scheduling system has more preference.

  • PDF

Distributed Multimedia Scheduling in the Cloud

  • Zheng, Mengting;Wang, Wei
    • Journal of Multimedia Information System
    • /
    • v.2 no.1
    • /
    • pp.143-152
    • /
    • 2015
  • Multimedia services in the cloud have become a popular trend in the big data environment. However, how to efficiently schedule a large number of multimedia services in the cloud is still an open and challengeable problem. Current cloud-based scheduling algorithms exist the following problems: 1) the content of the multimedia is ignored, and 2) the cloud platform is a known parameter, which makes current solutions are difficult to utilize practically. To resolve the above issues completely, in this work, we propose a novel distributed multimedia scheduling to satisfy the objectives: 1) Develop a general cloud-based multimedia scheduling model which is able to apply to different multimedia applications and service platforms; 2) Design a distributed scheduling algorithm in which each user makes a decision based on its local information without knowing the others' information; 3) The computational complexity of the proposed scheduling algorithm is low and it is asymptotically optimal in any case. Numerous simulations have demonstrated that the proposed scheduling can work well in all the cloud service environments.

Distributed Proportional Fair Scheduling for Wireless LANs (무선 LAN을 위한 분산화된 비례공정 스케줄링)

  • Park, Hyung-Kun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2262-2264
    • /
    • 2007
  • In this paper, we propose a distributed opportunistic scheduling scheme for wireless LAN network. Proportional fair scheduling is one of the opportunistic scheduling schemes and used for centralized networks, whereas we design distributed proportional fair scheduling (DPFS). In the proposed DPFS scheme, each receiver estimates channel condition and calculates independently its own priority with probabilistic manner, which can reduce excessive probing overhead required to gather the channel conditions of all receivers. We evaluate the proposed DPFS using extensive simulation and simulation results show that DPFS obtains up to 23% higher throughput than conventional scheduling schemes and has a flexibility to control the fairness and throughput by controlling the system parameter.

Development of an Extended EDS Algorithm for CAN-based Real-Time System

  • Lee, Byong-Hoon;Kim, Dae-Won;Kim, Hong-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.60.3-60
    • /
    • 2001
  • Usually the static scheduling algorithms such as DMS(Deadline Monotonic Scheduling) or RMS(Rate Monotonic Scheduling) are used for CAN scheduling due to its ease with implementation. However, due to their inherently low utilization of network media, some dynamic scheduling approaches have been studied to enhance the utilization. In case of dynamic scheduling algorithms, two considerations are needed. The one is a priority inversion due to rough deadline encoding into stricted arbitration fields of CAN. The other is an arbitration delay due to the non-preemptive feature of CAN. In this paper, an extended algorithm is proposed from an existing EDS(Earliest Deadline Scheduling) approach of CAN scheduling algorithm having a solution to the priority inverstion ....

  • PDF

L-RE Coordinates Algorithm for Task Scheduling in Real-time Multiprocessor System (실시간 멀티프로세서 시스템에서의 태스크 스케줄을 위한 L-RE 좌표 알고리즘)

  • Huang, Yue;Kim, Yong-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.3
    • /
    • pp.147-153
    • /
    • 2007
  • Task scheduling is an essential part of any computer system for allocating tasks to a processor of the system among various competitors. As we know, in real-time system, the failure of scheduling a hard real-time task my lead to disastrous consequence. Besides efficiency, resource and speed, real-time system has to take time constraint in serious consideration. This paper proposes a priority-driven scheduling algorithm for real-time multiprocessor system. which is called L-RE coordinates algorithm. L-RE coordinates is a new way of describing the task scheduling problem. In the algorithm, we take both deadline and laxity into consideration for allocating the priority. The simulation result shows that the new algorithm is viable and performance better than EDF and LLF algorithm on schedulability and context switch respectively.

  • PDF

Scheduling of Sporadic and Periodic Tasks and Messages with End-to-End Constraints

  • Kim, Hyoung-Yuk;Kim, Sang-Yong;Oh, Hoon;Park, Hong-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.747-752
    • /
    • 2004
  • Researches about scheduling of the distributed real-time systems have been proposed. However, they have some weak points, not scheduling both sporadic and periodic tasks and messages or being unable to guaranteeing the end-to-end constraints due to omitting precedence relations between sporadic tasks. So this paper proposes a new scheduling method for distributed real-time systems consisting of sporadic and periodic tasks with precedence relations and sporadic and periodic messages, guaranteeing end-to-end constraints. The proposed method is based on a binary search-based period assignment algorithm, an end-to-end laxity-based priority assignment algorithm, and three kinds of schedulability analysis, node, network, and end-to-end schedulability analysis. In addition, this paper describes the application model of sporadic tasks with precedence constraints in a distributed real-time system, shows that existing scheduling methods such as Rate Monotonic (RM) scheduling are not proper to be applied to the system having sporadic tasks with precedence constraints, and proposes an end-to-end laxity-based priority assignment algorithm.

  • PDF