• Title/Summary/Keyword: Scenario neutral

Search Result 26, Processing Time 0.021 seconds

Hi, KIA! Classifying Emotional States from Wake-up Words Using Machine Learning (Hi, KIA! 기계 학습을 이용한 기동어 기반 감성 분류)

  • Kim, Taesu;Kim, Yeongwoo;Kim, Keunhyeong;Kim, Chul Min;Jun, Hyung Seok;Suk, Hyeon-Jeong
    • Science of Emotion and Sensibility
    • /
    • v.24 no.1
    • /
    • pp.91-104
    • /
    • 2021
  • This study explored users' emotional states identified from the wake-up words -"Hi, KIA!"- using a machine learning algorithm considering the user interface of passenger cars' voice. We targeted four emotional states, namely, excited, angry, desperate, and neutral, and created a total of 12 emotional scenarios in the context of car driving. Nine college students participated and recorded sentences as guided in the visualized scenario. The wake-up words were extracted from whole sentences, resulting in two data sets. We used the soundgen package and svmRadial method of caret package in open source-based R code to collect acoustic features of the recorded voices and performed machine learning-based analysis to determine the predictability of the modeled algorithm. We compared the accuracy of wake-up words (60.19%: 22%~81%) with that of whole sentences (41.51%) for all nine participants in relation to the four emotional categories. Accuracy and sensitivity performance of individual differences were noticeable, while the selected features were relatively constant. This study provides empirical evidence regarding the potential application of the wake-up words in the practice of emotion-driven user experience in communication between users and the artificial intelligence system.

The Applicability of Metaverse for Urban Inundation Response (도시 침수 대응을 위한 메타버스의 활용 가능성 고찰)

  • Kim, Dong Hyun;Park, Hyung Jun;Yoo, Hyung Ju;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.2
    • /
    • pp.13-25
    • /
    • 2022
  • Public consent is essential to proceed with large-scale projects such as dam and hydroelectric power plant in the Carbon Neutral Era. In general, when designing facilities such as dams and river facilities, the impact due to constructing them is analyzed through numerical simulation in advance. Those facilities are built to cope with floods and usually HEC-RAS is used for numerical simulation in this process. The numerical simulation provides accurate data, but it is very difficult to persuade the public only with the data. Therefore, this study intends to consider the utilization of metaverse in the field of urban flooding and flood response. The applicability of metaverse was confirmed by emphasizing visual effects and providing easy-to-see data, using a kind of metaverse platform called Cities: Skylines. The functions and limitations of this platform were reviewed. A virtual flood scenario was applied after implementing real cities on a metaverse. The hazard map established in Korea and the results of applying the scenario of metaverse platform were compared. On the metaverse, not only the disaster situation caused by realizing the city and society as it is, but also the spread of social disasters after the disaster can be confirmed. Through this, countermeasures can be virtually implemented. If these social and humanistic data are also verified in the future, it is expected that the overall process for responding to urban flooding can be modeled.

Horizontal-Axis Screw Turbine as a Micro Hydropower Energy Source: A Design Feasibility Study (마이크로 수력 에너지원의 수평축 스크류 터빈 : 설계 타당성 연구)

  • SHAMSUDDEEN, MOHAMED MURSHID;KIM, SEUNG-JUN;MA, SANG-BUM;KIM, JIN-HYUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.1
    • /
    • pp.95-104
    • /
    • 2022
  • Micro hydropower is a readily available renewable energy source that can be harvested utilizing hydrokinetic turbines from shallow water canals, irrigation and industrial channel flows, and run-off river stream flows. These sources generally have low head (<1 m) and low velocity which makes it difficult to harvest energy using conventional turbines. A horizontal-axis screw turbine was designed and numerically tested to extract power from such low-head water sources. The 3-bladed screw-type turbine is placed horizontally perpendicular to the incoming flow, partially submerged in a narrow water channel at no-head condition. The turbine hydraulic performances were studied using Computational Fluid Dynamics models. Turbine design parameters such as the shroud diameter, the hub-to-shroud ratios, and the submerged depths were obtained through a steady-state parametric study. The resulting turbine configuration was then tested by solving the unsteady multiphase free-surface equations mimicking an actual open channel flow scenario. The turbine performance in the shallow channel were studied for various Tip Speed Ratios (TSR). The highest power coefficient was obtained at a TSR of 0.3. The turbine was then scaled-up to test its performance on a real site condition at a head of 0.3 m. The highest power coefficient obtained was 0.18. Several losses were observed in the 3-bladed turbine design and to minimize losses, the number of blades were increased to five. The power coefficient improved by 236% for a 5-bladed screw turbine. The fluid losses were minimized by increasing the blade surface area submerged in water. The turbine performance was increased by 74.4% after dipping the turbine to a bottom wall clearance of 30 cm from 60 cm. The final output of the novel horizontal-axis screw turbine showed a 2.83 kW power output at a power coefficient of 0.63. The turbine is expected to produce 18,744 kWh/year of electricity. The design feasibility test of the turbine showed promising results to harvest energy from small hydropower sources.

Judo-doll System Development for Enhancement of Judo's Performance (유도 경기력 향상을 위한 유도 인형시스템 개발)

  • Park, Kang;Shim, Cheol-Dong;Kim, Eui-Hwan;Kim, Sung-Sup;Kim, Tae-Whan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.5
    • /
    • pp.383-392
    • /
    • 2010
  • The purpose of this study is to develop three Judo-doll systems for enhancement of Judo's performance. Traditional Judo training requires a human training partner. Unfortunately it is not always easy to find one. Multifunctional Judo-doll training system has therefore been developed, and is described here. The system consists of a dummy, a power generating mechanism, and kinematic links. The power-generating mechanism generates forces similar to those of a human, by adjusting deadweights and controlling powderbrake's forces. The powderbrake force is controlled by the microprocessor according to the exercise scenario. The kinetic links, which mimic a human training partner's motions, has been developed based on a $Vicon^{TM}$ system's analysis of the movement of human training partners. This mechanism whose name is "L link-wire" consists of L type links, wire, roller, and dead weight. This mechanism generates the force that leads the link to the neutral position regardless the link is pushed or pulled. The lifting mechanism that lifts the doll when the one-armed shoulder throw skill is applied is also developed. A 32-bit microprocessor controls the whole system; it reads the loadcell data, controls the electromagnetic force, and communicates with a PC via Bluetooth. The training history, including loadcell data, date, and training time, is stored in the PC for analysis. This training system can be used to enhance the Judo performance of any self training player.

Compatibilist Replies to Manipulation Arguments (자유의지에 대한 조작논증과 근원-양립가능주의의 대응)

  • Kim, Sungsu
    • Korean Journal of Logic
    • /
    • v.21 no.3
    • /
    • pp.373-393
    • /
    • 2018
  • Manipulation arguments purport to show that source freedom is incompatible with determinism. According to manipulation arguments, (1) intuitively, an agent manipulated in a certain manner to do A is not free, and (2) there is no significant difference between manipulation and determination. It follows that an agent determined to do A is not free. A compatibilist hard-line reply ('HR') denies (1), whereas a soft-line reply ('SR') denies (2). HR, which is arguably compatibilists' favorite, is assessed from the 'neutral stance.' HR turns out to fall short of adequately rejecting manipulation arguments. Recently Sartorio defends HR by claiming that (1) commits some sort of psychological fallacy. I argue that it does not work. I claim that SR is more promising. I examine the difference between intentional manipulation by design and ordinary determination. I argue that this difference suggests some determination scenario without intentional manipulation to which SR and manipulation arguments make different predictions, and that SR is better supported. Finally, incompatibilist objections are considered and replied.

Development of a decision scaling framework for drought vulnerability assessment of dam operation under climate change (Decision Scaling 기반 댐 운영 기후변화 가뭄 취약성 평가)

  • Kim, Jiheun;Seo, Seung Beom;Cho, Jaepil
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.273-284
    • /
    • 2023
  • Water supply is continuously suffering from frequent droughts under climate change, and such extreme events are expected to become more frequent due to climate change. In this study, the decision scaling method was introduced to evaluate the drought vulnerability under future climate change in a wider range. As a result, the water supply reliability of the Boryeong Dam ranged from 95.80% to 98.13% to the condition of the aqueduct which was constructed at the Boryeong Dam. Furthermore, the Boryeong Dam was discovered to be vulnerable under climate change scenarios. Hence, genetic algorithm-based hedging rules were developed to evaluate the reduction effect of drought vulnerability. Moreover, three demand scenarios (high, standard, and low demand) were also considered to reflect the future socio-economic change in the Boryeong Dam. By analyzing quantitative reliability and the probability of extreme drought occurrence under 5% of the water storage rate, all hedging rules demonstrated that they were superior in preparing for extreme drought under low-demand scenarios.