• Title/Summary/Keyword: Scavenging System

Search Result 625, Processing Time 0.027 seconds

The Inhibitory Effects of Pogostemon cablin Bentham Extract on Melanogenesis (광곽향 추출물의 멜라닌 생성 저해 효과)

  • Bae, Seong-Yun;Lee, Eung-Ji;Son, Rak-Ho;Lee, Yong-Hwa
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.35 no.1
    • /
    • pp.33-39
    • /
    • 2009
  • To develop a new natural whitening agent for cosmetics, we investigated the inhibitory effects of Pogostemon cablin Bentham extracts (PCE) and its active component on melanogenesis. PCE showed ROS scavenging activities in 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and xanthine/xanthine oxidase system with the $IC_{50}$ values of $24.2{\pm}2.85{\mu}g/mL$ and $IC_{50}=118{\pm}0.43{\mu}g/mL$, respectively. PCE reduced melanin contents of B16 melanoma cells in a dose-dependant manner and decreased to about 23 % at a concentration of $20{\mu}g/mL$ without cell cytotoxicity (below $100{\mu}g/mL$). And the PCE reduced intracellular tyrosinase activity about 18 % at concentration of $50{\mu}g/mL$. We purified one active compound from PCE and identified its structure. It was identified as patchouli alcohol, sesquiterpene family, by 1H-NMR, $13_C$-NMR, and Mass analysis. Patchouli alcohol also inhibited ROS scavenging activities in DPPH radical and xanthine/xanthine oxidase system with the $IC_{50}$ values of $3.14{\pm}0.12{\mu}g/mL$ and $49{\pm}3.24{\mu}g/mL$, respectively. Patchouli alcohol inhibited melanin synthesis in a dose dependent manner ($IC_{50}=3.9{\mu}g/mL$). And the patchouli alcohol reduced intracellular tyrosinase activity about 40 % at concentration of $10{\mu}g/mL$. Patchouli alcohol inhibited tyrosinase and TRP-2 expression at protein level. These results suggest that PCE and patchouli alcohol reduced melanin formation by the inhibited of tyrosinase activity and expression in B16 melanoma cells. Therefore, we suggest that PCE could be used as a useful whitening agent.

Anti-Oxidative and Anti-Inflammatory Activities of Euptelea Pleiosperma Ethanol Extract (Euptelea pleiosperma 에탄올 추출물의 항산화 및 항염증 활성)

  • Jin, Kyong-Suk;Park, Jung Ae;Lee, Ji Young;Kang, Ji Sook;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.2
    • /
    • pp.170-176
    • /
    • 2014
  • In this study, the anti-oxidative and anti-inflammatory activities of Euptelea pleiosperma ethanol extract (EPEE) were evaluated using in vitro assays and cell culture model systems. EPEE possessed a more potent scavenging activity against 1,1-diphenyl-2-picryl hydrazyl than the ascorbic acid used as a positive control. EPEE effectively suppressed lipopolysaccharide (LPS), in addition to hydrogen peroxide induced reactive oxygen species on RAW 264.7 cells. Furthermore, EPEE induced the expression of the anti-oxidative enzyme heme oxygenase 1 (HO-1) and its upstream transcription factor, nuclear factor-E2-related factor 2 (Nrf2), dose and time dependently. The modulation of HO-1 and Nrf2 expression might be regulated by mitogen-activated protein kinases and phosphatidyl inositol 3 kinase/Akt as their upstream signaling pathways. On the other hand, EPEE inhibited LPS induced nitric oxide (NO) formation without cytotoxicity. Suppression of NO formation was the result of the down regulation of inducible NO synthase (iNOS) by EPEE. Suppression of NO and iNOS by EPEE may be modulated by their upstream transcription factor, nuclear factor ${\kappa}B$, and AP-1 pathways. Taken together, these results provide important new insights into E. pleiosperma, namely that it possesses anti-oxidative and anti-inflammatory activities, indicating that it could be utilized as a promising material in the field of nutraceuticals.

Antioxidant and Neuronal Cell Protective Effects of Methanol Extract from Schizandra chinensis using an in vitro System (In vitro system에서 오미자 메탄올 추출물의 항산화 및 신경세포 보호효과)

  • Kim, Ji-Hye;Jeong, Chang-Ho;Choi, Gwi-Nam;Kwak, Ji-Hyun;Choi, Sung-Gil;Heo, Ho-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.712-716
    • /
    • 2009
  • In this study, the antioxidant and neuronal cell protective effects of methanol extract from Schizandra chinensis were evaluated. The proximate composition and total phenolics content of the extract were as follows: 64.88% nitrogen free extract, 10.56% crude fiber, 10.22% moisture, 8.33% crude protein, 5.05% ash, 0.96% crude fat, and 83.04 mg/g of total phenolics. In assays the methanol extract of Schizandra chinensis presented ferric reducing/antioxidant power (FRAP) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity in a dose-dependent manner. In a cell viability assay using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT), the methanol extract showed protective effect against $H_2O_2$-induced neurotoxicity, and lactate dehydrogenase (LDH) release into medium was also inhibited by various concentrations of extracts (68-80%). Cell viability after treatment of the methanol extract was higher than that shown for vitamin C ($100\;{\mu}M$) using a neutral red uptake (NRU) assay. Therefore, these data suggest that the methanol extract of Schizandra chinensis may be useful for neurodegenerative diseases including Alzheimer's disease.

Protective Effect of Oenanthe javanica Extract on the Carbon Tetrachloride-Induced Hepatotoxicity in Mice (미나리추출물이 사염화탄소에 의한 마우스 간손상에 미치는 영향)

  • 이상일;박용수;조수열
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.4
    • /
    • pp.392-397
    • /
    • 1993
  • The present work was undertaken to investigate the protective mechanism of Oenanthe iavanicu n-butanol extract on the carbon tetrachloride-induced hepatotoxicity in mice. It was observed that a striking enhancement of serum alanine aminotransferase and hepatic lipid peroxide content after carbon tetrachloride administration were markedly decreased by the presentment of Oenanthe javanica extract for 5 days. It was also observed that the hepatic aniline hydroxylase, catalase, glutathione S-transferase activity and glutathione content were not changed by the injection of Oenanthe javanica extract for 5 days. Whereas, hepatic xanthine oxidase activity was inhibited by the treatment of Oenanthe javanica extract for 5 days. After treatment with Oenanthe javanica extract, xanthine oxidase activity was decreased with dose and time-dependent manner as compared to control group. However, hepatic xanthine oxidase activity was not affected by the addition of Oenanthe javanica extract in vitro. These results suggest that the inhibition of hepatic xanthine oxidase activity by the injection of Oenanthe javanica extract is believed to be a possible protective mechanism for the carbon tetrachloride-indured hepatotoxicity in mice.

  • PDF

Effects of an extrusion process on the chemical properties and pigment stability of turmeric (압출성형처리에 의한 강황의 화학적 특성 및 색소 안정성 변화)

  • Sung, Yunkyung;Son, Heejin;Hong, Jungil
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.457-463
    • /
    • 2018
  • Various health benefits of turmeric have been reported. Therefore, an innovative application of turmeric as a functional food was explored. In the current study, effects of an extrusion process on the chemical properties and antioxidant activities of turmeric were investigated. Extrusion of turmeric was performed at $150^{\circ}C$ using screw revolution speeds of 500, 1,000, 1,300, and 1,600 rpm. A significant reduction in turmeric pigments and the formation of browning compounds occurred due to the extrusion. The degradation of pigments was proportional to the increase in screw speed. Infusion yields were significantly increased after the extrusion. The content of proteins and polyphenols, as well as the content of flavonoids in infusions and EtOH extracts were significantly reduced by the extrusion. Scavenging activities of turmeric against DPPH and ABTS radicals were also significantly reduced following the extrusion. These results indicate that the extrusion process caused a significant loss of pigments and decreased the antioxidant activities of turmeric. Therefore, further study related to the development of a proper extrusion process is to be needed.

DNA Damage of Lipid Oxidation Products and Its Inhibition Mechanism (지질산화생성물의 DNA손상작용 및 그 억제기구)

  • KIM Seon-Bong;KANG Jin-Hoon;PARK Young-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.5
    • /
    • pp.419-430
    • /
    • 1987
  • The damage of plasmid DNA by lipid peroxidation and its inhibition were investigated through the model system of DNA and linoleic acid at $37^{\circ}C$. The degree of DNA damage increased in proportion to the increase of concentration and peroxidation of linoleic acid. DNA damage induced from linoleic acid peroxidation was greatly inhibited by the addition of active oxygen scavengers, especially, singlet of oxygen scavenge$(\alpha-tocopherol,\;cysteine)$ and superoxide anion scavenger(superoxide dismutase, ascorbic acid) in reaction system. These active oxygens, such as superoxide anion and hydrogen peroxide were rapidly generated in the early stage of peroxidation (POV below 100 mg/kg) and also scanvenged by the addition of superoxide dismutase and catalase, respectively. Hydroperoxide isolated from autoxidised linoleic acid showed DNA damage. Hydroperoxide induced-DNA damage was not inhibited by active oxygen scavengers. Lipid oxidation products, malonaldehyde and hexanal, also influenced on the DNA damage. Accordingly, it is speculated that DNA damage by lipid oxidation products is due to active oxygens such as singlet oxygen and superoxide anion formed in the early stage of peroxidation, direct action of hydroperoxide and formation of low molecular carbonyl compound-DNA complex. Furthermore, DNA damage induced by lipid peroxidation was remarkably inhibited by the addition of active oxygen scavengers and natural antioxidative fractions extracted from garlic and ginger. These antioxidative fractions also suppressed the generation of active orygens and linoleic acid oxidation. It is assumed that the inhibition of DNA damage by garlic and ginger extracts is due to the scavenging effect of active oxygens and the inhibition of hydroperoxide and oxidation products formation.

  • PDF

Transgenic Plants with Enhanced Tolerance to Environmental Stress by Metabolic Engineering of Antioxidative Mechanism in Chloroplasts (엽록체 항산화기구 대사조절에 의한 환경스트레스 내성 식물)

  • Kwon Suk-Yoon;Lee Young-Pyo;Lim Soon;Lee Haeng-Soon;Kwak Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.151-159
    • /
    • 2005
  • Injury caused by reactive oxygen species (ROS), known as oxidative stress, is one of the major damaging factors in plants exposed to environmental stress. Chloroplasts are specially sensitive to damage by ROS because electrons that escape from the photosynthetic electron transfer system are able to react with relatively high concentration of $O_2$ in chloroplasts. To cope with oxidative stress, plants have evolved an efficient ROS-scavenging enzymes such as superoxide dismutase (SOD) and ascorbate peroxidase (APX), and low molecular weight antioxidants including ascorbate, glutathione and phenolic compounds. To maintain the productivity of plants under the stress condition, it is possible to fortify the antioxidative mechanisms in the chloroplasts by manipulating the antioxidation genes. A powerful gene expression system with an appropriate promoter is key requisite for excellent stress-tolerant plants. We developed a strong oxidative stress-inducible peroxidase (SWPA2) promoter from cultured cells of sweetpotato (Ipomoea batatas) as an industrial platform technology to develop transgenic plants with enhanced tolerance to environmental stress. Recently, in order to develop transgenic sweetpotato (tv. Yulmi) and potato (Solanum tuberosum L. cv. Atlantic and Superior) plants with enhanced tolerance to multiple stress, the genes of both CuZnSOD and APX were expressed in chloroplasts under the control of an SWPA2 promoter (referred to SSA plants). As expected, SSA sweetpotato and potato plants showed enhanced tolerance to methyl viologen-mediated oxidative stress. In addition, SSA plants showed enhanced tolerance to multiple stresses such as temperature stress, drought and sulphur dioxide. Our results strongly suggested that the rational manipulation of antioxidative mechanism in chloroplasts will be applicable to the development of all plant species with enhanced tolerance to multiple environmental stresses to contribute in solving the global food and environmental problems in the 21st century.

The Rapid Detection of Antioxidants from Safflower Seeds (Carthamus tinctorius L.) Using Hyphenated-HPLC Techniques (Hyphenated-HPLC 기술을 활용한 홍화씨의 항산화 성분 분석)

  • Kim, Su-Jin;Kim, Sang-Min;Kang, Suk-Woo;Um, Byung-Hun
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.414-419
    • /
    • 2010
  • Hyphenated-HPLC techniques combine the separation power of HPLC with the structural and bioactivity information provided by NMR, ESI/MS, and an on-line antioxidant screening system. The major advantages over the traditional off-line techniques are rapidity and efficiency. In this study, we used hyphenated HPLC techniques including online HPLC-ABTS, LC-NMR, and LC-MS todirectly identify the major antioxidants of safflower (Carthamus tinctorius L.) seeds. The results demonstrated that the major antioxidant compounds from on-line HPLC-ABTS analysis were identified as 8'-hydroxyarcgenin-4'-O-$\beta$-D-glucoside, N-(p-coumaroyl) serotonin, and N-feruloylserotonin. Among them, N-feruloylserotonin accounted for almost 50% of the ABTS radical scavenging activity of the total extract. The results demonstrate that HPLC hyphenated techniques can be used to rapidly screen and structurally identify antioxidants from crude plant extracts.

Antioxidant activities, production of reactive oxygen species, and cytotoxic properties of fractions from aerial parts of glasswort (Salicornia herbacea L.) (퉁퉁마디 지상부 분획의 산화방지 활성, 활성산소종 생성과 세포독성 조절작용)

  • Kang, Smee;Hong, Jungil
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.574-581
    • /
    • 2016
  • Glasswort (Salicornia herbacea L.) is an edible halophyte that grows in salt marshes. In the present study, anti- and pro-oxidant activities and cytotoxic properties of glasswort were investigated. Solvent fractions, including fractions of hexane, ethylether (Fr.E), ethylacetate (Fr.EA), butanol and water, were prepared from a 70% methanol extract of glasswort aerial parts. Fr.EA contained the highest levels of total polyphenols and flavonoids, showing the strongest scavenging activities against DPPH and ABTS radicals, and nitrite. In addition Fr.EA showed the most potent cytotoxic effects on HCT-116 colon cancer cells and INT-407 normal intestinal cells, followed by Fr.E. Most fractions also decreased the level of reactive oxygen species in the treated cells, but generated $H_2O_2$ in the medium. The cytotoxic activity of Fr.EA was more pronounced in the presence of ascorbic acid or N-acetylcysteine. These results indicate that the fractions from aerial parts of glasswort exhibit both anti- and pro-oxidant activities, and these activities modulate cytotoxic properties.

Expression of Cu/Zn SOD according to H2O2 in Hepatoma cell line (Hepatoma 세포주에서 H2O2 처리에 의한 Cu/Zn SOD의 발현)

  • Kim, Young-Min;Seo, Won-Sook
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.230-234
    • /
    • 2007
  • Oxygen is required for many important aerobic cellular reactions, it may undergo electrontransfer reactions, which generate highly reactive membrane-toxic intermediates (reactive oxygen species, ROS), such as hydrogen peroxide, singlet oxygen, superoxide radical, hydroxyl radical, hydroperoxyl radical, hydroxy ion. Various mechanisms are available to protect cells against damage caused by oxidative free radicals, including scavenging enzyme systems such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). This antioxidant defense system is a very complex and finely tuned system consisting of enzymes capable of detoxifying oxygen radicals as well as low molecular weight antioxidants. In addition, repair and turnover processes help to minimize subcellular damage resulting from free radical attack. $H_2O_2$,one of the major ROS, is produced at a high rate as a product of normal aerobic metabolism. The primary cellular enzymatic defense systems against $H_2O_2$ are the glutathione redox cycle and catalase. From Northern blot analysis of total RNAs from cultured cell with $H_2O_2$ treatment, various results were obtained. Expression of Cu/Zn SOD decreased when cell passage increased, but the level of the Cu/Zn SOD was scarcely expressed in 35 passage.