Browse > Article
http://dx.doi.org/10.9721/KJFST.2018.50.5.457

Effects of an extrusion process on the chemical properties and pigment stability of turmeric  

Sung, Yunkyung (Division of Applied Food System, College of Natural Science, Seoul Women's University)
Son, Heejin (Maiim Co. Ltd.)
Hong, Jungil (Division of Applied Food System, College of Natural Science, Seoul Women's University)
Publication Information
Korean Journal of Food Science and Technology / v.50, no.5, 2018 , pp. 457-463 More about this Journal
Abstract
Various health benefits of turmeric have been reported. Therefore, an innovative application of turmeric as a functional food was explored. In the current study, effects of an extrusion process on the chemical properties and antioxidant activities of turmeric were investigated. Extrusion of turmeric was performed at $150^{\circ}C$ using screw revolution speeds of 500, 1,000, 1,300, and 1,600 rpm. A significant reduction in turmeric pigments and the formation of browning compounds occurred due to the extrusion. The degradation of pigments was proportional to the increase in screw speed. Infusion yields were significantly increased after the extrusion. The content of proteins and polyphenols, as well as the content of flavonoids in infusions and EtOH extracts were significantly reduced by the extrusion. Scavenging activities of turmeric against DPPH and ABTS radicals were also significantly reduced following the extrusion. These results indicate that the extrusion process caused a significant loss of pigments and decreased the antioxidant activities of turmeric. Therefore, further study related to the development of a proper extrusion process is to be needed.
Keywords
turmeric; curcuminoid; extrusion; infusion; antioxidant;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lee BH, Choi HA, Kim M, Hong J. Changes in chemical stability and bioactivities of curcumin by ultraviolet radiation. Food Sci. Biotechnol. 22: 279-282 (2013)   DOI
2 Lee BH, Kim D, Kang S, Kim M, Hong J. Changes in the chemical stability and antioxidant activities of curcuminoids under various processing conditions. Korean J. Food Sci. Technol. 42: 97-102 (2010)
3 Mozhaev VV, Heremans K, Frank J, Masson P, Balny C. High pressure effects on protein structure and function. Proteins 24: 81-91 (1996)   DOI
4 Pari L, Tewas D, Eckel J. Role of curcumin in health and disease. Arch. Physiol. Biochem. 114: 127-49 (2008)   DOI
5 Park KA, Choi Y, Kang S, Kim M, Hong J. Effects of proteins on the reactivity of various phenolic compounds with the Folin-Ciocalteu reagent. Korean J. Food Sci. Technol. 47: 299-305 (2015)   DOI
6 Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231-1237 (1999)   DOI
7 Ryu GH, Remon JP. Extraction Yield of extruded ginseng and granulation of its extracts by cold extrusion-spheronization. J. Korean Soc. Food Sci. Nutr. 33: 899-904 (2004)   DOI
8 Song E, Hong J. Changes in chemical properties and cytotoxicity of turmeric pigments by microwave treatment. Korean J. Food Sci. Technol. 49: 693-698 (2017)
9 Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64: 555-559 (1999)   DOI
10 Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: The Indian solid gold. Vol. 595, pp. 1-75. In: The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. Aggarwal BB, Surh Y, Shishodia S (ed). Springer, Berlin, Germany (2007)
11 Ak T, Gulcin Y. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 174: 27-37 (2008)   DOI
12 Alappat L, Awad AB. Curcumin and obesity: Evidence and mechanisms. Nutr. Rev. 68: 729-738 (2010)   DOI
13 Altan A, McCarthy KL, Maskan M. Twin-screw extrusion of barley-grape pomace blends: Extrudate characteristics and determination of optimum processing conditions. J. Food Eng. 89: 24-32 (2008)   DOI
14 Ames JM, Defaye AB, Bailey RG, Bates L Analysis of the non-volatile Maillard reaction products formed in an extrusion-cooked model food system. Food Chem. 61: 521-524 (1998)   DOI
15 Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200 (1958)   DOI
16 Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 (1976)   DOI
17 Ding Q, Ainsworth P, Tucker G, Marson H. The Effect of extrusion conditions on the physicochemical properties and sensory characteristics of rice-based expanded snacks. J. Food Eng. 66: 283-289 (2005)   DOI
18 Frazier PJ, Crawshaw A, Daniels NWR, Russell Eggit PW. Optimisation of process variables in extrusion texturing of soya. J. Food Eng. 2: 79-103 (1983).   DOI
19 Han O, Lee SH, Lee HY, Oh SL, Lee CH. The effects of screw speeds and moisture contents on soy protein under texturization using a single-screw extruder. Korean J. Food Sci. Technol. 21: 772-779 (1989).
20 Kim J, Lee C. Formation of enzyme resistant starch by extrusion cooking of high amylose corn starch. Korean J. Food Sci. Technol. 30: 1128-1133 (1998)