• 제목/요약/키워드: Scattering parameters

검색결과 438건 처리시간 0.03초

레이저 산란 메커니즘 매개변수의 실험적 선정 및 태양전지 웨이퍼의 레이저산란패턴 분석에 관한 연구 (Study on Experimental Selection of Parameters in Laser Scattering Mechanism and Analysis of Laser Scattering Patterns in Solar Cell Wafer)

  • 김경범
    • 반도체디스플레이기술학회지
    • /
    • 제10권2호
    • /
    • pp.7-12
    • /
    • 2011
  • In this paper, a laser scattering mechanism are designed to detect micro defects such as dent, scratch, pinhole, etc. Its influential parameters are experimentally selected and scattering patterns of micro defects have been analyzed for silicon wafer in solar cell. As a result of experiments, scattered lights are rather increased in wafer surface with micro defects, in comparison to no micro ones. Scattering parameters are optimally selected for obtaining robust and high quality laser scattering images of micro defects. It is shown that scattered light components are linearly increased according to the increase of micro defect sizes, and the depth of micro-defects give a large influence on optical deflection.

Polarimetric Parameters Extraction to Understand the Scattering Behavior of NASA/JPL AIRSAR Data

  • Yang, Min-Sil;Moon, Wooil-M.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.442-447
    • /
    • 2002
  • When a SAR system operates in a full-polarimetic mode, the amount of the information one can extract is so complex that the effective presentation of the information is important. However, the information acquired from the polarimetric SAR data is often difficult to interpret by itself, because it is consisted of both the amplitude information and the phase information. Polarimetric parameters are the good way of representing the polarimetric SAR information in a quantitative manner. Also they can characterize the scattering behavior of the ground scatterer. In this research, extraction of polarimetric parameters, evaluation and interpretation of the scattering behavior of the ground with respect to polarimetric SAR signal are carried out. Using the NASA/JPL AIRSAR data, we estimated the polarimetric parameters and compared them in terms of the ground features. In general, extracted parameters well represent the characteristics of the different features on the ground.

  • PDF

실험계획법을 이용한 레이저 산란의 최적 조건 결정에 대한 연구 (A Study on the Optimal Condition Determination of Laser Scattering Using the Design of Experiment)

  • 한재철;김경범
    • 한국정밀공학회지
    • /
    • 제26권7호
    • /
    • pp.58-64
    • /
    • 2009
  • In this paper, an inspection mechanism based on laser scattering has been developed for the surface evaluation of infrared cut-off filters, and optimum conditions of laser scattering are determined using the design of experiment. First of all, attributes and influence factors of laser scattering are investigated and then a laser scattering inspection mechanism is newly designed based on analyses of laser scattering parameters. Also, Taguchi method, one of experimental designs, is used for the optimum condition selection of laser scattering parameters and the optimum condition is determined in order to maximize the detection capability of surface defects. Experiments show that the proposed method is useful in a consistent and effective defect detection and can be applied to surface evaluation processes in manufacturing.

유한차분 시간영역 방법을 이용한 Ag 나노링 구조의 산란효과 (Finite-Difference Time-Domain Calculation of Light Scattering Efficiency for Ag Nanorings)

  • 이태수;정종율
    • 한국재료학회지
    • /
    • 제22권10호
    • /
    • pp.519-525
    • /
    • 2012
  • Enhancement of light trapping in solar cells is becoming increasingly urgent for the development of next generation thin film solar cells. One of the possible candidates for increasing light trapping in thin film solar cells that has emerged recently is the use of scattering from metallic nanostructures. In this study, we have investigated the effects of the geometric parameters of Ag nanorings on the light scattering efficiency by using three dimensional Finite Different Time Domain (FDTD) calculations. We have found that the forward scattering of incident radiation from Ag nanorings strongly depends on the geometric parameters of the nanostructures such as diameter, height, etc. The forward scattering to substrate direction is increased as the outer diameter and height of the nanorings decrease. In particular, for nanorings larger than 200 nm, the inner diameter of Ag nanorings should be optimized to enhance the forward scattering efficiency. Light absorption and scattering efficiency calculations for the various nanoring arrays revealed that the periodicity of nanorings arrays also plays an important role in the absorption and the scattering efficiency enhancement. Light scattering efficiency calculations for nanoring arrays also revealed that enhancement of scattering efficiency could be utilized to enhance the light absorption through the forward scattering mechanism.

A Simple Microwave Backscattering Model for Vegetation Canopies

  • Oh Yisok;Hong Jin-Young;Lee Sung-Hwa
    • Journal of electromagnetic engineering and science
    • /
    • 제5권4호
    • /
    • pp.183-188
    • /
    • 2005
  • A simple microwave backscattering model for vegetation canopies on earth surfaces is developed in this study. A natural earth surface is modeled as a two-layer structure comprising a vegetation layer and a ground layer. This scattering model includes various scattering mechanisms up to the first-order multiple scattering( double-bounce scattering). Radar backscatter from ground surface has been modeled by the polarimetric semi-empirical model (PSEM), while the backscatter from the vegetation layer modeled by the vector radiative transfer model. The vegetation layer is modeled by random distribution of mixed scattering particles, such as leaves, branches and trunks. The number of input parameters has been minimized to simplify the scattering model. The computation results are compared with the experimental measurements, which were obtained by ground-based scatterometers and NASA/JPL air-borne synthetic aperture radar(SAR) system. It was found that the scattering model agrees well with the experimental data, even though the model used only ten input parameters.

2포트 회로망 분석기를 이용한 다중포트 시스템의 S파라미터 측정에 관한 컨버전 알고리즘 (Conversion Algorithm for measuring Scattering Parameters of Multiport System with a 2-port Network Analyzer)

  • ;이준상;배현주;이재중;나완수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1654-1655
    • /
    • 2011
  • This paper presents an algorithm applied to measure scattering parameters of a Multiport device with a 2-port Vector Network Analyzer (VNA). By employing the conversion of Scattering matrix with different reference impedances at ports, data obtained from 2-port configuration measurements can be synthesized to build the full scattering matrix of this device. A good agreement of estimated and measured parameters verified the performance of the algorithm.

  • PDF

레이저 산란 영상을 이용한 표면거칠기의 실험적 규명에 관한 연구 (Study on the Experimental Identification of Surface Roughness Using Laser Scattering Image)

  • 홍연기;김경범
    • 대한기계학회논문집A
    • /
    • 제34권1호
    • /
    • pp.35-41
    • /
    • 2010
  • 본 논문에서는 레이저 산란 영상을 이용하여 표면거칠기를 실험적으로 규명하였다. 우선, 레이저 산란 매개변수들과 표면형상에 따라 나타나는 광로의 편향성에 대해 고찰하였고, 이를 이용하여 레이저 산란 검사 시스템을 구성하였다. 연삭표면에서 획득한 레이저 산란 영상을 분석한 결과 영상에서 수직방향으로 나타나는 산란광 분포영역이 증가와 감소를 반복하는 특징이 나타났다. 이러한 차별적 특징을 표현하는 레이저 산란 영상을 획득하기 위해 실험계획법을 이용하여 레이저 산란변수들의 최적조건을 선정하였고, 연삭표면에서 표면거칠기가 증가함에 따라 레이저 산란 영상 내에서 수직방향으로 나타나는 산란광 분포 영역이 선형적으로 증가함을 알 수 있었다. 이러한 정보는 마이크로 표면의 평가 및 거칠기 측정 시 주요한 인자로 사용될 수 있을 것이다.

산란행렬에 의한 2단자망 RF 공동공진기의 Q 측정 (Q measurement of two port RE cavity by scattering parameters)

  • 한대현
    • 한국정보통신학회논문지
    • /
    • 제4권4호
    • /
    • pp.895-899
    • /
    • 2000
  • 산란행렬을 이용하여 2단자망 RF 공동공진기의 Q 측정 방법을 제안하였다. 집중소자를 이 용한 등가회로 모델을 이용하여 공동공진기의 Q를 포함한 파라미터의 함수로 산란행렬을 구했다. 산란행렬은 회로망분석기를 이용하여 직접 측정할 수 있다. 제안한 방법으로 측정한 결과는 기존에 잘 알려진 방법과 일치함을 보였다. 제안한 방법의 Q 측정 절차는 기존의 방법에 비해서 간단할 뿐만 아니라 RF 공동공진기가 전자빔을 가속시킬 때 중요한 파라미터인 결합전력비를 구할 수도 있다.

  • PDF

Using of Scattering Bond Graph Methodology for a Physical Characteristics Analysis of “D-CRLH” Transmission Line

  • Taghouti, Hichem;Jmal, Sabri;Mami, Abdelkader
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.943-950
    • /
    • 2016
  • In this paper, we propose to analyze the physical characteristics of a planar dual-composite right-left handed transmission line by a common application of Bond Graph approach and Scattering formalism (Methodology S.BG). The technique, we propose consists, on the one hand, of modeling of a dual composite right-left metamaterial transmission line (D-CRLH-TL) by Bond Graph approach, and, it consists of extracting the equivalent circuit of this studied structure. On the other hand, it consists to exploiting the scattering parameters (Scattering matrix) of the DCRLH-TL using the methodology which we previously developed since 2009. Finally, the validation of the proposed and used technique is carried out by comparisons between the simulations results with ADS and Maple (or MatLab).

무질서하게 분포된 산란매질에서 빔전파의 확산에 관한 검증 (Verification on Diffusion of Beam Propagation in Randomly Distributed Scattering Medium)

  • 김기준;이후설
    • 한국응용과학기술학회지
    • /
    • 제24권4호
    • /
    • pp.354-361
    • /
    • 2007
  • The distribution of light in a randomly scattering medium can represent problems found in many area. Particularly, in the clinical application of lasers for Photodynamic therapy(PDT) or in the fluorescence spectroscopy for biological tissue, turbidity plays a very important role. The influences of fluorophor, scatterer, and absorber in turbid material by light scattering were interpreted for the scattered fluorescence intensity and wavelength. The molecular properties have been studied by laser induced fluorescence spectroscopy in scattering medium as tissue. It has been found that the effects of optical properties in scattering media could be investigated by the optical $parameters({\mu}_s$, ${\mu}_a$ ,${\mu}t)$. Experimental and Monte Carlo simulation method for modelling light transport in tissue was applied. The experimental results using a randomly distributed scattering medium were discussed and compared with those obtained through Monte Carlo simulation. It'll be also important in designing the best model for oil chemistry, medicine and application of medical engineering.