• Title/Summary/Keyword: Scattering parameters

Search Result 436, Processing Time 0.035 seconds

Study on Experimental Selection of Parameters in Laser Scattering Mechanism and Analysis of Laser Scattering Patterns in Solar Cell Wafer (레이저 산란 메커니즘 매개변수의 실험적 선정 및 태양전지 웨이퍼의 레이저산란패턴 분석에 관한 연구)

  • Kim, Gyung-Bum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.7-12
    • /
    • 2011
  • In this paper, a laser scattering mechanism are designed to detect micro defects such as dent, scratch, pinhole, etc. Its influential parameters are experimentally selected and scattering patterns of micro defects have been analyzed for silicon wafer in solar cell. As a result of experiments, scattered lights are rather increased in wafer surface with micro defects, in comparison to no micro ones. Scattering parameters are optimally selected for obtaining robust and high quality laser scattering images of micro defects. It is shown that scattered light components are linearly increased according to the increase of micro defect sizes, and the depth of micro-defects give a large influence on optical deflection.

Polarimetric Parameters Extraction to Understand the Scattering Behavior of NASA/JPL AIRSAR Data

  • Yang, Min-Sil;Moon, Wooil-M.
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.442-447
    • /
    • 2002
  • When a SAR system operates in a full-polarimetic mode, the amount of the information one can extract is so complex that the effective presentation of the information is important. However, the information acquired from the polarimetric SAR data is often difficult to interpret by itself, because it is consisted of both the amplitude information and the phase information. Polarimetric parameters are the good way of representing the polarimetric SAR information in a quantitative manner. Also they can characterize the scattering behavior of the ground scatterer. In this research, extraction of polarimetric parameters, evaluation and interpretation of the scattering behavior of the ground with respect to polarimetric SAR signal are carried out. Using the NASA/JPL AIRSAR data, we estimated the polarimetric parameters and compared them in terms of the ground features. In general, extracted parameters well represent the characteristics of the different features on the ground.

  • PDF

A Study on the Optimal Condition Determination of Laser Scattering Using the Design of Experiment (실험계획법을 이용한 레이저 산란의 최적 조건 결정에 대한 연구)

  • Han, Jae-Chul;Kim, Gyung-Bum
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.7
    • /
    • pp.58-64
    • /
    • 2009
  • In this paper, an inspection mechanism based on laser scattering has been developed for the surface evaluation of infrared cut-off filters, and optimum conditions of laser scattering are determined using the design of experiment. First of all, attributes and influence factors of laser scattering are investigated and then a laser scattering inspection mechanism is newly designed based on analyses of laser scattering parameters. Also, Taguchi method, one of experimental designs, is used for the optimum condition selection of laser scattering parameters and the optimum condition is determined in order to maximize the detection capability of surface defects. Experiments show that the proposed method is useful in a consistent and effective defect detection and can be applied to surface evaluation processes in manufacturing.

Finite-Difference Time-Domain Calculation of Light Scattering Efficiency for Ag Nanorings (유한차분 시간영역 방법을 이용한 Ag 나노링 구조의 산란효과)

  • Lee, Tae-Soo;Jeong, Jong-Ryul
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.519-525
    • /
    • 2012
  • Enhancement of light trapping in solar cells is becoming increasingly urgent for the development of next generation thin film solar cells. One of the possible candidates for increasing light trapping in thin film solar cells that has emerged recently is the use of scattering from metallic nanostructures. In this study, we have investigated the effects of the geometric parameters of Ag nanorings on the light scattering efficiency by using three dimensional Finite Different Time Domain (FDTD) calculations. We have found that the forward scattering of incident radiation from Ag nanorings strongly depends on the geometric parameters of the nanostructures such as diameter, height, etc. The forward scattering to substrate direction is increased as the outer diameter and height of the nanorings decrease. In particular, for nanorings larger than 200 nm, the inner diameter of Ag nanorings should be optimized to enhance the forward scattering efficiency. Light absorption and scattering efficiency calculations for the various nanoring arrays revealed that the periodicity of nanorings arrays also plays an important role in the absorption and the scattering efficiency enhancement. Light scattering efficiency calculations for nanoring arrays also revealed that enhancement of scattering efficiency could be utilized to enhance the light absorption through the forward scattering mechanism.

A Simple Microwave Backscattering Model for Vegetation Canopies

  • Oh Yisok;Hong Jin-Young;Lee Sung-Hwa
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.4
    • /
    • pp.183-188
    • /
    • 2005
  • A simple microwave backscattering model for vegetation canopies on earth surfaces is developed in this study. A natural earth surface is modeled as a two-layer structure comprising a vegetation layer and a ground layer. This scattering model includes various scattering mechanisms up to the first-order multiple scattering( double-bounce scattering). Radar backscatter from ground surface has been modeled by the polarimetric semi-empirical model (PSEM), while the backscatter from the vegetation layer modeled by the vector radiative transfer model. The vegetation layer is modeled by random distribution of mixed scattering particles, such as leaves, branches and trunks. The number of input parameters has been minimized to simplify the scattering model. The computation results are compared with the experimental measurements, which were obtained by ground-based scatterometers and NASA/JPL air-borne synthetic aperture radar(SAR) system. It was found that the scattering model agrees well with the experimental data, even though the model used only ten input parameters.

Conversion Algorithm for measuring Scattering Parameters of Multiport System with a 2-port Network Analyzer (2포트 회로망 분석기를 이용한 다중포트 시스템의 S파라미터 측정에 관한 컨버전 알고리즘)

  • Long, Luong Duc;Lee, June-Sang;Bae, Hyeon-Ju;Lee, Jae-Joong;Nah, Wan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1654-1655
    • /
    • 2011
  • This paper presents an algorithm applied to measure scattering parameters of a Multiport device with a 2-port Vector Network Analyzer (VNA). By employing the conversion of Scattering matrix with different reference impedances at ports, data obtained from 2-port configuration measurements can be synthesized to build the full scattering matrix of this device. A good agreement of estimated and measured parameters verified the performance of the algorithm.

  • PDF

Study on the Experimental Identification of Surface Roughness Using Laser Scattering Image (레이저 산란 영상을 이용한 표면거칠기의 실험적 규명에 관한 연구)

  • Hong, Yeon-Ki;Kim, Gyung-Bum
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.35-41
    • /
    • 2010
  • In this paper, surface roughness has been experimentally identified using laser scattering images. The parameters and optical deflected rays of laser scattering are investigated on laser scattering system, and then their optimum parameters on grinding surfaces are selected using design of experiment. The application of the optimum parameters results in featured laser scattering images, in which the mean of vertical scattering distributions is regarded as a feature. It is shown that the feature of laser scattering distributions is linearly increased according to grinding surface roughness and so the information can be used as important factor for the measurement and evaluation of various surface roughness. In the future, the performance of the proposed laser scattering method will be evaluated using AFM.

Q measurement of two port RE cavity by scattering parameters (산란행렬에 의한 2단자망 RF 공동공진기의 Q 측정)

  • 한대현
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.4
    • /
    • pp.895-899
    • /
    • 2000
  • A method of measuring Q of a two port cavity by scattering parameters is proposed. The scattering parameters of a two port cavity resonator are derived by a lumped equivalent circuit model as a function of cavity parameters, including the cavity Q. These can be also obtained by direct measurement with a modern network analyzer, The results show good agreement with those from other well-known methods. This two port measurement can provide additional information such as the coupled power ratio, which is one of the important parameters for the beam accelerating cavities.

  • PDF

Using of Scattering Bond Graph Methodology for a Physical Characteristics Analysis of “D-CRLH” Transmission Line

  • Taghouti, Hichem;Jmal, Sabri;Mami, Abdelkader
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.943-950
    • /
    • 2016
  • In this paper, we propose to analyze the physical characteristics of a planar dual-composite right-left handed transmission line by a common application of Bond Graph approach and Scattering formalism (Methodology S.BG). The technique, we propose consists, on the one hand, of modeling of a dual composite right-left metamaterial transmission line (D-CRLH-TL) by Bond Graph approach, and, it consists of extracting the equivalent circuit of this studied structure. On the other hand, it consists to exploiting the scattering parameters (Scattering matrix) of the DCRLH-TL using the methodology which we previously developed since 2009. Finally, the validation of the proposed and used technique is carried out by comparisons between the simulations results with ADS and Maple (or MatLab).

Verification on Diffusion of Beam Propagation in Randomly Distributed Scattering Medium (무질서하게 분포된 산란매질에서 빔전파의 확산에 관한 검증)

  • Kim, Ki-Jun;Lee, Hoo-Seol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.354-361
    • /
    • 2007
  • The distribution of light in a randomly scattering medium can represent problems found in many area. Particularly, in the clinical application of lasers for Photodynamic therapy(PDT) or in the fluorescence spectroscopy for biological tissue, turbidity plays a very important role. The influences of fluorophor, scatterer, and absorber in turbid material by light scattering were interpreted for the scattered fluorescence intensity and wavelength. The molecular properties have been studied by laser induced fluorescence spectroscopy in scattering medium as tissue. It has been found that the effects of optical properties in scattering media could be investigated by the optical $parameters({\mu}_s$, ${\mu}_a$ ,${\mu}t)$. Experimental and Monte Carlo simulation method for modelling light transport in tissue was applied. The experimental results using a randomly distributed scattering medium were discussed and compared with those obtained through Monte Carlo simulation. It'll be also important in designing the best model for oil chemistry, medicine and application of medical engineering.