• Title/Summary/Keyword: Scattering cross section

Search Result 156, Processing Time 0.024 seconds

Determination of the Electron Collision Cross Sections by Electron Swarm Method (전자군 방법에 의한 전자충돌단면적 결정)

  • 전병훈;하성철
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.5
    • /
    • pp.435-440
    • /
    • 2003
  • The electron-atom collision studies have been essentially used for testing and developing suitable theories of the scattering and collision processes, and for providing a tool for obtaining detailed information on the structure of the target atoms and molecules and final collision products. And, the development of that has also been strongly motivated by the need for electron collision data in such fields as laser Physics and development, astrophysics, Plasma devices, upper atmospheric processes and radiation physics. The concept and the Principle of determination of the electron collision cross sections for atoms and molecules by using the present electron swarm method are explained.

Application of matrix methods to scattering by conducting bodies (매트릭스 법에 의한 완전 도체의 산란 특성)

  • Kim, Chul-Hoo;Kim, Che-Young;Yu, Sang-Dae
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.335-338
    • /
    • 1988
  • A numerical method is presented for the scattering by the perfectly conducting cylinder with arbitrary cross sections. The relevant integral equation considered by the E-field formulation is solved by method of moments, and thereby the surface current induced as well as the radar cross section of the scatterer are numerically computed to specify the scattering nature of the scatterer. Two separate methods, one with point matching and the other Galerkin's method, are considered to make cross checks to the results obtained. Taking two half pulses suggested to expand the surface current shows savings in computation time and accurate solutions for the corners on the scatterer.

  • PDF

An Analysis of Electromagnetic Wave Scattering for the Elliptic-Multi Layer Dielectric Cylinders (다층타원 유전체주의 전자파 산란 해석)

  • 박동희;김정기
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.2 no.3
    • /
    • pp.26-31
    • /
    • 1991
  • The scattering property of TMz illuminated a elliptic dielectric cylinders with arbitrary cross section are analyzed by the boundary element techniques. The boundary element equations are for- mulated via Maxwell's equations, weighted residual of Green's theorem, and the boundary conditions. The unknown surface fields on the boundaries are then calculated by the boundary element integral equations. Once the surface fields are found, the scattered fields in far-zone and scattering widths (SW) are readily determined. To show the validity and usefulness of this formulation, computations are compared with those obtained using analytical method and one layer circular cylinder. As exten- sion to arbitrary cross-sectioned cylinders, plane wave scattering from a elliptic dielectric cylinders are numerically analyzed. A general computer program has been developed using the quadratic ele- ments(Higher order borndary elements) and the Gaussian quadrature.

  • PDF

Raman-Scattered Balmer Wings in Symbiotic Stars

  • Lee, Hui-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.148.2-148.2
    • /
    • 2011
  • Many symbiotic stars exhibit features formed through Raman scattering with hydrogent atom, which can be useful in probing the mass loss and mass transfer processes. These include Raman scattered O VI 6830, 7088, Raman scattered He II 6545, 4850, 4332, and broad wings around Balmer emission lines. In this study we investigate the basic properties of broad Balmer wings formed through Raman scattering using a Monte Carlo technique. Special attention is made on the symmetry of the wings which is expected to be broken due to asymmetric scattering cross section. In this poster, we show preliminary results.

  • PDF

Estimation of Neutron Absorption Ratio of Energy Dependent Function for $^{157}Gd$ in Energy Region from 0.003 to 100 eV by MCNP-4B Code

  • Lee, Sam-Yol
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.3
    • /
    • pp.23-25
    • /
    • 2009
  • Gd-157 material has very large neutron capture cross section in the thermal region. So it is very useful to shield material for thermal neutrons. Futhermore, in the neutron capture experiment and calculation, the neutron absorption and scattering are very important. Especially these effects are conspicuous in the resonance energy region and below the thermal energy region. In the case of very narrow resonance, the effect of scattering is to be more considerable factor. In the present study, we obtained energy dependent neutron absorption ratios of natural indium in energy region from 0.003 to 100 keV by MCNP-4B Code. The coefficients for neutron absorption was calculated for circular type and 1 mm thickness. In the lower energy region, neutron absorption is larger than higher region, because of large capture cross section (1/v). Furthermore it seems very different neutron absorption in the large resonance energy region. These results are very useful to decide the thickness of sample and shielding materials.

  • PDF

A New Inverse Scattering Technique Using the Moment Method in the Spectral Domain , II : Numerical Simulation (파수영역에서 모멘트 방법을 이용한 새로운 역산란 방법 , II : 수치계산)

  • Lee, Jae-Min;Kim, Se-Yun;Ra, Jung-Woong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.10
    • /
    • pp.1150-1157
    • /
    • 1988
  • In this paper, the reconstruction of complex permittivity distribution on a rectangular cross section of inhomogeneous dielectric cylinders is performed by employing the spectral inverse scattering scheme presented in the part I of these companion papers. Numerical simulations provide the superresolution to the permitivity profiles nearly regardless of the measurement locations of the scattered field and the permittivity distributions on the cross section.

  • PDF

Broad-band Multi-layered Radar Absorbing Material Design for Radar Cross Section Reduction of Complex Targets Consisting of Multiple Reflection Structures (다중반사 구조를 갖는 복합구조물의 RCS 감소를 위한 광대역 다층 전파흡수체 설계)

  • Kim, Kook-Hyun;Cho, Dae-Seung;Kim, Jin-Hyeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.4
    • /
    • pp.445-450
    • /
    • 2007
  • An optimum design process of the broad-band multi-layered radar absorbing material, using genetic algorithm, is established for the radar cross section reduction of a complex target, which consists of multiple reflection structures, such as surface warships. It follows the successive process of radar cross section analysis, scattering center analysis, radar absorbing material design, and reanalysis of radar cross section after applying the radar absorbing material. It is demonstrated that it is very effective even in the optimum design of the multi-layer radar absorbing material. This results from the fact that the three factors, i.e.. the incident angle range, broad-band frequencies, and maximum thickness can be simultaneously taken into account by adopting the genetic algorithm.

Near-field Sonar Cross Section Analysis of Underwater Target Using Spherical Projection Method (구면투영법을 이용한 수중표적의 근거리장 소나단면적 해석)

  • Kim, Kook-Hyun;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.695-702
    • /
    • 2008
  • In this paper, a new numerical method is proposed to analyze near-field sonar cross section of acoustically large-sized underwater targets such as submarines. A near-field problem is converted to a far-field problem using a spherical projection method with respect to the objective target. Then, sonar cross section is calculated with a physical optics well established in far-field acoustic wave scattering problems. The analysis results of a square flat plate compared with those obtained by other method show the accuracy of the proposed method. Moreover, it is noted that the sonar cross section is varied with respect to the targeting point as well as the range. Finally, numerical analysis results of real-like underwater target such as a submarine pressure hull are discussed.

Modified Finite Volume Time Domain Method for Efficient Prediction of Radar Cross Section at High Frequencies

  • Chatterjee, Avijit;Myong, Rho-Shin
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.3
    • /
    • pp.100-109
    • /
    • 2008
  • The finite volume time domain(FVTD) technique faces serious limitations in simulating electromagnetic scattering at high frequencies due to requirements related to discretization. A modified FVTD method is proposed for electrically large, perfectly conducting scatterers by partially incorporating a time-domain physical optics(PO) approximation for the surface current. Dominant specular returns in the modified FVTD method are modeled using a PO approximation of the surface current allowing for a much coarser discretization at high electrical sizes compared to the original FVTD scheme. This coarse discretization can be based on the minimum surface resolution required for a satisfactory numerical evaluation of the PO integral for the scattered far-field. Non-uniform discretization and spatial accuracy can also be used in the context of the modified FVTD method. The modified FVTD method is aimed at simulating electromagnetic scattering from geometries containing long smooth illuminated sections with respect to the incident wave. The computational efficiency of the modified FVTD method for higher electrical sizes are shown by solving two-dimensional test cases involving electromagnetic scattering from a circular cylinder and a symmetric airfoil.