• Title/Summary/Keyword: Scattering characteristic

Search Result 140, Processing Time 0.022 seconds

Light Scattering Characteristics of Defects on Silicon Wafer Surface (실리콘 웨이퍼 미세 표면결함의 광산란 특성 평가)

  • Ha T.H.;Song J.Y.;Miyoshi Takashi;Takaya Yasuhiro
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1083-1086
    • /
    • 2005
  • Light scattering measurement system that can evaluate light scattering characteristic from defects on silicon wafer surface has been developed. The system uses $Ar^+$ laser as an illumination source, and a highly sensitive photomultiplier tube (PMT) for detecting scattered light from defects. Unlike with conventional measurement system, our system has ability to measure scattered light pattern from wide range of scattering angles with changeable incidence condition. It is shown that our developed system is effective to discriminate the types and sizes of defects from basic experimental results using a microscatch and a PSL sphere.

  • PDF

Characteristic modes of a longitudinal slot in the outer conductro of coaxial waveguide for scattering : TE case (외부도체면에 축방향 슬롯이 있는 동축선로 도파관의 산란에 대한 특성모드의 해석 : TE의 경우)

  • 윤리호;조영기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.7
    • /
    • pp.23-29
    • /
    • 1995
  • A characteristic mode theory for longitudinal slot of arbitrary width in the outer conductor of coaxial waveguide is applied for calculating the characteristic magnetic currents, the characteristic fields, radiation patterns, and the fields evershere(inside and outside the guide, and in the aperture region). Numerical results of the equivalent magnetic currents and the radiation patterns are compared with those obtained by use of the method of moments.

  • PDF

Scattering characteristic analysis of Fresnel zone plate lens using TLM (TLM법을 이용한 프레넬 존 플레이트 렌즈 산란특성 해석)

  • 김태용
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2003.06a
    • /
    • pp.15-18
    • /
    • 2003
  • Most numerical techniques such as FEM, BEM, and MOM are able to analize electromagnetic scattering problems from arbitrary shapes. Although these methods could be applied to compute electromagnetic scattering problems in frequency domain, it was limited for electrodynamic problem in time domain. In this paper, electromagnetic scattering problem from Fresnel zone plate lens are considered. Some numerical results computed by TLM are compared with Kirchhoff's approximation and PO method.

  • PDF

Acoustic Scattering from Circular Cylinder by Periodic Sources (주기적인 음원에 의한 원형 실린더의 음향 산란)

  • Lee, Duck-Joo;Kim, Yong-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.41-47
    • /
    • 2007
  • Scattering fields of two dimensional acoustic waves by a circular cylinder are investigated. The present numerical approach for the acoustic scattering problem has difficulties of numerical robustness, long-time stability and suitability of far-field boundary treatments. The time-dependent periodic acoustic source is used to analyze Interference patterns between incident waves and waves reflected by the cylinder. Characteristic boundary algorithms coupled with 4th order Modified-Flux-Approach ENO(essentially non-oscillatory) schemes are employed in generalized coordinates to examine the effect of the wane frequency on the interference patterns. Non-reflecting boundary conditions, which is crustal for accurate computations of aeroacoustic problems, are used not to contaminate scattering fields by reflected waves at the outer boundary. Computed scattering fields show the circumferential acoustic modes generated by interacting between acoustic sources and scattered waves. At a lower frequency, the wave passes almost straight through the cylinder without Interacting with circular cylinder. Simulation results are presented and compared with the analytic solution. Computed RMS-pressure distribution on the cylinder wall is good agreement with exact solution.

A Consideration on the Characteristics of Electron Beam Dose Distributions for Clinical Applications (임상적용을 위한 전자선의 선량분포 특성에 대한 고찰)

  • Cha, Dong-Soo
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.1
    • /
    • pp.65-69
    • /
    • 2010
  • High energy electron beams were to concentrically dose inside a tumor and more energy is a shape decreased of dose. Therefore, it is useful to radiation therapy of a tumor. Also high energy electron beams ionized into collision with a atom in structure material of tissue and it has big changes to dose distribution by multiple scattering. The study had to establish characteristic of electron beams from interaction of electron beams and materials. Experiment method was to measure dependence of electron beam central axis for depth dose curve, field flatness and symmetry and field size dependence. The results were able to evaluate data for a datum pint of electron beam. Also radiotherapy has to be considered for not only energy pencil of lines but characteristic, electron guide and isodose curves distribution.

  • PDF

Scattering of Coaxial Waveguide with Periodic Axial Slots Using Characteristic Mode Theory : TE Case (특성모드 이론을 이용한 주기적인 축방향 슬롯이 있는 동축선로 도파관 구조의 산란특성 : TE의 경우)

  • 윤리호;조영기
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.6
    • /
    • pp.629-635
    • /
    • 1997
  • The theory of characteristic modes for coaxial waveguide with periodic axial slots is used to derive the weighted eigenvalue equation for calculating the characteristic values and the characteristic currents. Once the characteristic values and the characteristic currents are obtained, the important quantities such as the equivalent magnetic current, radiation patterns, and RCS are determined. Numerical results of the equivalent magnetic currents, radiation patterns, and RCS are compared with those obtained by use of the method of moments. A fairly good correspondence is observed between them.

  • PDF

A Study on Scattered Fields Analysis of Ultrasonic SH-Wave from Multi-Defects by Boundary Element Method (경계요소법을 이용한 다중결함의 SH형 초음파 산란장 해석에 관한 연구)

  • Lee, Jun-Hyeon;Lee, Seo-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1878-1885
    • /
    • 1999
  • Ultrasonic technique which is one of the most common nondestructive evaluation techniques has been applied to evaluate the integrity of structures by analyzing the characteristic of scattering sign al from internal defects. Therefore, a numerical analysis of ultrasonic scattering field due to defect profiles is absolutely needed for the accurate, quantitative estimation of internal defects. In this paper, the SH-wave scattering by multi-cavity defects and inclusion using Elastodynamic Boundary Element Method is studied. The effects of shape and distance of defects on transmitted and reflected fields are considered. The interaction of multi-cavity defects in SH-wave scattering is also investigated. Numerical calculations by the BEM have been carried out to predict near field solution of scattered fields of ultrasonic SH-wave. The presented results can be used to improve the detection sensitivity and pursue quantitative nondestructive evaluation for inverse problem.

SCATTERING CORRECTION FOR IMAGE RECONSTRUCTION IN FLASH RADIOGRAPHY

  • Cao, Liangzhi;Wang, Mengqi;Wu, Hongchun;Liu, Zhouyu;Cheng, Yuxiong;Zhang, Hongbo
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.529-538
    • /
    • 2013
  • Scattered photons cause blurring and distortions in flash radiography, reducing the accuracy of image reconstruction significantly. The effect of the scattered photons is taken into account and an iterative deduction of the scattered photons is proposed to amend the scattering effect for image restoration. In order to deduct the scattering contribution, the flux of scattered photons is estimated as the sum of two components. The single scattered component is calculated accurately together with the uncollided flux along the characteristic ray, while the multiple scattered component is evaluated using correction coefficients pre-obtained from Monte Carlo simulations.The arbitrary geometry pretreatment and ray tracing are carried out based on the customization of AutoCAD. With the above model, an Iterative Procedure for image restORation code, IPOR, is developed. Numerical results demonstrate that the IPOR code is much more accurate than the direct reconstruction solution without scattering correction and it has a very high computational efficiency.

Numerical Modeling of a Short-range Three-dimensional Flash LIDAR System Operating in a Scattering Atmosphere Based on the Monte Carlo Radiative Transfer Matrix Method (몬테 카를로 복사 전달 행렬 방법을 사용한 산란 대기에서 동작하는 단거리 3차원 플래시 라이다 시스템의 수치적 모델링)

  • An, Haechan;Na, Jeongkyun;Jeong, Yoonchan
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.2
    • /
    • pp.59-70
    • /
    • 2020
  • We discuss a modified numerical model based on the Monte Carlo radiative transfer (MCRT) method, i.e., the MCRT matrix method, for the analysis of atmospheric scattering effects in three-dimensional flash LIDAR systems. Based on the MCRT method, the radiative transfer function for a LIDAR signal is constructed in a form of a matrix, which corresponds to the characteristic response. Exploiting the superposition and convolution of the characteristic response matrices under the paraxial approximation, an extended computer simulation model of an overall flash LIDAR system is developed. The MCRT matrix method substantially reduces the number of tracking signals, which may grow excessively in the case of conventional Monte Carlo methods. Consequently, it can readily yield fast acquisition of the signal response under various scattering conditions and LIDAR-system configurations. Using the computational model based on the MCRT matrix method, we carry out numerical simulations of a three-dimensional flash LIDAR system operating under different atmospheric conditions, varying the scattering coefficient in terms of visible distance. We numerically analyze various phenomena caused by scattering effects in this system, such as degradation of the signal-to-noise ratio, glitches, and spatiotemporal spread and time delay of the LIDAR signals. The MCRT matrix method is expected to be very effective in analyzing a variety of LIDAR systems, including flash LIDAR systems for autonomous driving.

Estimation Model for RF Signal Strength over Sea and Land Surfaces (바다와 지표면의 산란을 고려한 RF 수신신호세기 계산 모델)

  • Hyun, Jong-Chul;Kim, Sang-Keun;Oh, Yi-Sok
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.143-148
    • /
    • 2005
  • The objective of this study is to estimate RF signal strength over sea and land surfaces. For this work we calculated scattering by land with DEM(Digital Elevation Model) and sea surface with RMS surface height. and we selected two area inland and sea shore as RX point. And for each area, we get VV-pol and HH-pol characteristic of scattering at 2.2GHz.

  • PDF