• Title/Summary/Keyword: Scattering Parameter

Search Result 209, Processing Time 0.027 seconds

A Theory on Phase Behaviors of Diblock Copolymer/Homopolymer Blends

  • 윤경섭;박형석
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.9
    • /
    • pp.873-885
    • /
    • 1995
  • The local structural and thermodynamical properties of blends A-B/H of a diblock copolymer A-B and a homopolymer H are studied using the polymer reference interaction site model (RISM) integral equation theory with the mean-spherical approximation closure. The random phase approximation (RPA)-like static scattering function is derived and the interaction parameter is obtained to investigate the phase transition behaviors in A-B/H blends effectively. The dependences of the microscopic interaction parameter and the macrophase-microphase separation on temperature, molecular weight, block composition and segment size ratio of the diblock copolymer, density, and concentration of the added homopolymer, are investigated numerically within the framework of Gaussian chain statistics. The numerical calculations of site-site interchain pair correlation functions are performed to see the local structures for the model blends. The calculated phase diagrams for A-B/H blends from the polymer RISM theory are compared with results by the RPA model and transmission electron microscopy (TEM). Our extended formal version shows the different feature from RPA in the microscopic phase separation behavior, but shows the consistency with TEM qualitatively. Scaling relationships of scattering peak, interaction parameter, and temperature at the microphase separation are obtained for the molecular weight of diblock copolymer. They are compared with the recent data by small-angle neutron scattering measurements.

Analysis on fatigue life distribution of composite materials (복합재료 피로 수명 분포에 관한 고찰)

  • 황운봉;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.790-805
    • /
    • 1988
  • Static strength and fatigue life scattering of glass fiber reinforced epoxy composite materials has been studied. Normal, lognormal, two-parameter and three-parameter Weibull distribution functions are used for strength and one-stress fatigue life distribution. The value of mean fatigue life is analysed using mean fatigue life, mean log fatigue life and expected value of 2 and 3-parameter Weibull distribution functions. Modification on non-statistical cumulative damage models is made in order to interpret the result of two-stress level fatigue life scattering. The comparison results show that 3-parameter Weibull distribution has better predictions in static strength and one-stress level fatigue life distributions. However, no advantage of 3-parameter Weibll distribution is found over 2-parameter Weibull distribution in two-stress level fatigue life predictions. It is found that two-stress level fatigue life prediction by the expanded equal rank assumption is close to the experimental data.

10 Gbps transmission performance for self-phase modulation and chirping (Self-Phase Modulation 현상과 Chirping이 10 Gbps 전송 특성에 미치는 영향)

  • 정지채;김성기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.1893-1898
    • /
    • 1998
  • We have redefined the $\alpha$ -parameter of the extended transmitters in the presence of self-phase modulation (SPM) induced chirp. The $\alpha$ -parameter is effectively lowered to about 1, when the SPM effect with the launching power of 12.5dBm (maximum launching power to avoid stimulated Brillouin scattering(SBS)) is included, compared to the $\alpha$ -parameter of the transmitter algone. The lowered $\alpha$ -parameter has improved the transmission performance significantly regardless the transmitter is operated with positive or negative chirp. The SPM-induced effective $\alpha$ -parameter can be used as a design parameter for the high speed (10 Gbps) transmission systems.

  • PDF

Atomic Structure Analysis of BaO Layers on the Si(100) Surface by Impact-Collision ion Scattering Spectroscopy

  • Hwang, Yeon
    • Korean Journal of Crystallography
    • /
    • v.17 no.2
    • /
    • pp.51-54
    • /
    • 2006
  • BaO layers were formed on the Si(100) surface by thermal evaporation of barium metal with simultaneous oxidation. The atomic structure of BaO layers at the initial stage of the deposition was investigated by the scattering intensity variation of $He^+$ions on time-of-flight (TOF) impact-collision ion scattering (ICISS). The results show that several number of BaO layers are formed on the Si(100) surface with the lattice parameter of bulk phase, and the occupation of oxygen atoms of the BaO layers is on-top site of silicon atoms.

Scattering Analysis of Radar Target via Evolutionary Adaptive Wavelet Transform (진화적 적응 웨이브릿 변환에 의한 레이다 표적의 산란 해석)

  • Choi, In-Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.148-153
    • /
    • 2007
  • In this paper, the evolutionary adaptive wavelet transform(EAWT) is applied to the scattering analysis of radar target. EAWT algorithm uses evolutionary programming for the time-frequency parameter extraction instead of FFT and the bisection search method used in the conventional adaptive wavelet transform(AWT). Therefore, the EAWT has a better performance than the conventional AWT. In the simulation using wire target(Airbus-like), the comparisons with the conventional AWT are presented to show the superiority of the EAWT algorithm in the analysis of scattering phenomenology. The EAWT can be effectively applied to the radar target recognition.

Acoustic scattering of an obliquely incident acoustic field by a finite elastic cylindrical shell (비스듬히 입사하는 음장에 대한 유한 길이의 탄성 원통 쉘의 음향 산란)

  • Lee, Keunhwa;Byun, Sung-Hoon;Kim, Sea-Moon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.5
    • /
    • pp.511-521
    • /
    • 2019
  • In this study, we theoretically study the acoustic scattering of an obliquely incident plane wave from a finite elastic cylindrical shell. A heuristic scattering method of Ye [Z. Ye, J. Acoust. Soc. Am. 102, 877-884 (1997)] for a finite fluid cylinder is extended into a finite elastic cylindrical shell since no analytic solutions exist in the finite cylinder. The elastic cylindrical shell is modeled with the 3D elastic wave theory considering internal fluid. Using the derived analytic solution, we observe the effect of the internal fluid on the scattering field, the scattering field for the Rayleigh parameter, and the far-field scattering function for the elastic property of the cylindrical shell.

Numerical Analysis of Natural Convection-Radiation Heat Transfer in an Enclosure Containing Absorbing, emitting and Linear Anisotropic Scattering Medium (흡수,방사 및 선형비등방 산란 매질을 포함하는 밀폐공간내의 자연대류- 복사열전달에 대한 수치해석)

  • 차상명;김종열;박희용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.952-964
    • /
    • 1992
  • The interaction of natural convection and radiation heat transfer in a two dimensional square enclosure containing absorbing, emitting and linear anisotropically scattering gray medium is numerically analyzed. P-1 and P-3 approximation is introduced to calculate radiation heat transfer. The effects of scattering albedo, wall emissivity, scattering anisotropy, and optical thickness on the characteristics of the flow and temperature field and heat transfer are investigated. Temperature and velocity profiles depend a great deal on the scattering albedo, and the importance of this effect increases with decrease in albelo. Planck number is another important parameter in radiation heat transfer. The increase in scattering albedo increases convection heat transfer and decreases radiation heat transfer at hot wall. However, the increase in scattering albedo decreases both convection and radiation heat transfer at cold wall. The increase in optical thickness decreases radiation heat transfer. The scattering anisotropy has important effects on the radiation heat transfer only. The highly forward scattering leads to an increase of radiation heat transfer whereas the highly backward scattering leads to an decrease of radiation heat transfer. The effect of scattering anisotropy decreases when reducing the wall emissivity.

Reliability Evaluation on Creep Life Prediction of Alloy 617 for a Very High Temperature Reactor (초고온 가스로용 Alloy 617의 크리프 수명예측 신뢰성 평가)

  • Kim, Woo-Gon;Park, Jae-Young;Kim, Seon-Jin;Hong, Sung-Deok;Kim, Yong-Wan
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.10
    • /
    • pp.721-728
    • /
    • 2012
  • This paper evaluates the reliability of creep rupture life under service conditions of Alloy 617, which is considered as one of the candidate materials for use in a very high temperature reactor (VHTR) system. A Z-parameter, which represents the deviation of creep rupture data from the master curve, was used for the reliability analysis of the creep rupture data of Alloy 617. A Service-condition Creep Rupture Interference (SCRI) model, which can consider both the scattering of the creep rupture data and the fluctuations of temperature and stress under any service conditions, was also used for evaluating the reliability of creep rupture life. The statistical analysis showed that the scattering of creep rupture data based on Z-parameter was supported by normal distribution. The values of reliability decreased rapidly with increasing amplitudes of temperature and stress fluctuations. The results established that the reliability decreased with an increasing service time.

Microwave Network Study by Bond Graph Approach. Application to Tow-Port Network Filter

  • Jmal, Sabri;Taghouti, Hichem;Mami, Abdelkader
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.121-128
    • /
    • 2022
  • There are much processing techniques of microwave circuits, whose dimensions are small compared to the wavelength, but the disadvantage is that they cannot be directly applied to circuits working at high and/or low frequencies. In this article, we will consider the bond graph approach as a tool for analyzing and understanding the behavior of microwave circuits, and to show how basic circuit and network concepts can be extended to handle many microwaves analysis and design problems of practical interest. This behavior revealed in the scattering matrix filter, and which will be operated from its reduced bond graph model. So, we propose in this paper, a new application of bond graph approach jointly with the scattering bond graph for a high frequency study.

SOME SPECTRAL AND SCATTERING PROPERTIES OF GENERALIZED EIGENPARAMETER DEPENDENT DISCRETE TRANSMISSION STURM-LIOUVILLE EQUATION

  • Guher Gulcehre Ozbey;Guler Basak Oznur;Yelda Aygar ;Turhan Koprubasi
    • Honam Mathematical Journal
    • /
    • v.45 no.3
    • /
    • pp.457-470
    • /
    • 2023
  • In this study, we set a boundary value problem (BVP) consisting of a discrete Sturm-Liouville equation with transmission condition and boundary conditions depending on generalized eigenvalue parameter. Discussing the Jost and scattering solutions of this BVP, we present scattering function and find some properties of this function. Furthermore, we obtain resolvent operator, continuous and discrete spectrum of this problem and we give an valuable asymptotic equation to get the properties of eigenvalues. Finally, we give an example to compare our results with other studies.