• Title/Summary/Keyword: Scattered Ray

Search Result 215, Processing Time 0.029 seconds

The Assessment of Scattered Ray According to the Beam Thickness of Z-axis in MDCT(Multi Detector Computed Tomography) (MDCT(다배열검출기 전산화단층촬영장치)에서 Z-축의 빔 두께에 따른 산란선의 평가)

  • Ryu, Gwi-Bok;Kim, Hyun-Soo;Lyu, Kwang-Yeul;Dong, Kyung-Rae;Kweon, Dae-Cheol
    • Journal of radiological science and technology
    • /
    • v.33 no.2
    • /
    • pp.127-132
    • /
    • 2010
  • The purpose of this study is to measure scattered ray which is occurred except for Z-axis range of the detector in MDCT's iso-center and present the basic data about the standard for reduction of scattered ray. The development of MDCT brings out the enlargement of beam thickness to the patient's Z-axis, which distributes to the increase in exposure dose according to the rise of scattered ray. Also MDCT brings out the increase of scattered ray about 4times more than SDCT. To evaluate scattered ray according to the change of beam thickness on MDCT, we measured scattered ray of MDCT's Z-axis beam thickness by using one 16-slice CTs and two 64-slice CTs. We used the ionization chamber 60ml 2026C as the equipment of measurement. In our results, we found out that the change of scattered ray according to the beam thickness in the same kVp has increase of scattered ray. Secondly we found out the increase of scattered ray according to the increase of kVp. Lastly we found out the decrease of scattered ray according to the increase of the distance from the ionization chamber.

A Study of Scattered Radiation Effect on Digital Radiography Imaging System (디지털 방사선영상 시스템에서 산란선이 영상 품질에 미치는 영향)

  • Baek, Cheol-Ha
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.71-78
    • /
    • 2017
  • Scattered radiation is inherent phenomenon of x-ray, which occurs to the subject (or patient). Therefore it cannot be avoidable but also interacts as serious noise factor because the only meaningful information on x-ray radiography is primary x-ray photons. The purpose of this study was to quantify scattered radiation for various shooting parameters and to verify the effect of anti-scatter grid. We employed beam stopper method to characterize scatter to primary ratio. To evaluate effect on the projection images calculated contrast to noise ratio of given shooting parameters. From the experiments, we identified the scattered radiation increases in thicker patient and smaller air gap. Moreover, scattered radiation degraded contrast to noise ratio of the projection images. We find out that the anti-scatter grid rejected scattered radiation effectively, however there were not fewer than 100% of scatter to primary ratio in some shooting parameters. The results demonstrate that the scattered radiation was serious problem of medical x-ray system, we confirmed that the scattered radiation was not considerable factor of dig ital radiog raphy.

A Study on the Reduction of Scattered Ray in Outside Radiation Field (조사야 외부의 산란선량 감소 방법에 관한 연구)

  • Je, Jaeyong;Jang, Howon
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.7
    • /
    • pp.539-543
    • /
    • 2016
  • In this research, The way to decrease a patient's exposure dose by reducing the scattered radiation dosage outside a radiation field with an diagnosis X-ray was examined. The scattered radiation dosage reaching other parts outside the radiation field was to be reduced by attaching a self-produced $150{\times}190mm^2$ lead plate to the lower part of a collimator. When a lead plate was inserted additionally and the scattered radiation dosage of the X axis was measured in the direction of the central X-ray axis, It was found out to have been decreased by 26 to 36%, and in the direction of Y axis, which was vertical direction from the central axis, The scattered radiation dosage depending on whether a lead plate was used or not displayed no large differences. These results shows that the impact of the scattered radiation by the off focus X-ray that was generated around the focus was bigger than that generated by the shutter of the collimator. Therefore it has been concluded that installing an additional lead plate in the lower part of the existing collimator can decrease the scattered radiation dosage outside a radiation field.

Measurement of the Scattered Spatial Dose Distribution for the Mobile X-ray Radiography (이동형 X선촬영에서 공간산란선량 분포 측정)

  • Kwon, Deok-Mun;Park, Myeong-Hwan;Nam, Hyo-Duk
    • Journal of radiological science and technology
    • /
    • v.24 no.1
    • /
    • pp.23-26
    • /
    • 2001
  • The spatial distribution of the scattered dose for mobile X-ray radiography is measured. The scattered X-ray exposures at the radius of 50, 100 and 150 cm from the irradiation center are 880, 180 and $50\;{\mu}R$, respectively. This scattered X-rays can be reduced to 60% by inserting the portable shield made by 0.4 mm copper sheet sandwiched in two plywoods.

  • PDF

Change of the Scattered Dose by Field Size in X-ray Radiography (X선 촬영에서 조사야 크기에 따른 산란선량의 변화)

  • Choi, Seong-Kwan
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.3
    • /
    • pp.198-203
    • /
    • 2013
  • The purpose of this study is to investigate the scattered dose of X-ray at a distance of 30cm from the area to be examined when X-ray field is the most optimized and maximized when X-ray is performed on hand, skull and abdomen. As a result of scattered dose of X-ray on hand, skull and abdomen, first, when X-ray field was the most optimized upon adult X-ray examination, it was $0.08{\mu}Sv$, $4.39{\mu}Sv$ and $5.56{\mu}Sv$, respectively. When x-ray field was maximized, it was $0.58{\mu}Sv$, $33.47{\mu}Sv$ and $35.93{\mu}Sv$, respectively. Second, when X-ray field was the most optimized upon pediatric X-ray examination, it was $0.40{\mu}Sv$, $14.51{\mu}Sv$ and $18.86{\mu}Sv$, respectively. When x-ray field was maximized, it was $2.78{\mu}Sv$, $107.40{\mu}Sv$ and $117.52{\mu}Sv$, respectively(P<0.001). As a result, when the size of X-ray field was decreased down to be necessary and optimal upon X-ray examination, emission of scattered X-ray around specimen is reduced approximately 6-7 times as much as that when it was maximized.

Studios in Selected Grid Ratio of Objective Thickness on X-ray Exposure (X선촬영시(X線撮影時) 피사체(被寫體) 두께에 따른 격자비(格子比) 선정(選定)에 관한 연구(硏究))

  • Yoon, Chul-Ho;Chu, Sung-Shil;Huh, Joon
    • Journal of radiological science and technology
    • /
    • v.5 no.1
    • /
    • pp.21-34
    • /
    • 1982
  • When unattenuated x-ray radiation passes through the object it is transmitted and scattered from objectes and impinging on the film. During this process certain radiation is absorbed within the object and others transmitted in reduced scattering. The scattering radiation influence upon radiation image quality, confining x-ray beam which means scattering radiation produce increased fog on x-ray film image and as a consequence decrease contrast and less detail of the film there for the elimination of fog and for absorbing scattered radiation, the grid has been used between the object and the film in order to rid of scattering rays. Using grid is good method for the qualification of the better image as well as in using air gap technique. The grid is easy to manipulate and promote good efficiency which is defined by ICRU and JIS. It is the purpose to study for eliminating scattered radiation from the tissue equivalent acryl phantom using grid, we have studied and evaluated the grid permeability about the x-ray exposure, the selection of grid ratio according to phantom thickness, on x-ray exposure are performed as follows. 1. The penetrating ratio of primary x-ray is remarkably decreased by increasing of the grid ratio, but it is almost not influenced in KVP difference and phantom thickness. 2. The scattered radiation is proportionaly increased by thickness of the phantom, having nothing to do with grid ratios. 3. The relative between the penetration rate of primary and secondary x-ray is improved by increasing grid ratio, and decreased by phantom thickness, and slightly decreased by high tube voltage. 4. The grid of 5:1 and 10:1 ratio are adequate to the phantom of 10cm and 15cm thickness, respectively.

  • PDF

Evaluation of Scattered Rays of Jelly Type Shielding Body by L-spine AP using X-ray (L-Spine X-선 촬영에서의 Jelly type 차폐체의 산란선 차폐평가)

  • Jang, Hui-Min;Kim, Do-Gwon;Kim, Hyeong-Bin;Yoon, Joon
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.907-913
    • /
    • 2020
  • There have been continuous controversies on medical X-ray protection and numerous researchers have been trying to prevent unnecessary exposure to radiation. As X-ray passes through the patient and obtains an image, it creates scattered ray due to interactions such as photoelectric effect and Compton scattering with the subject. As a result, both medical radiation staff and patient are exposed to unnecessary radiation on areas other than the target area. In response, this study will be assuming a body of a female, radiating X-ray on the phantom under the conditions of lumbar spine AP test, and measuring scattered ray around breasts and thyroid glands. Then, The experiment results were as follows. After application of non-shielding material, the average of scattered ray was 0.88 mR in thyroid measurement, 3.34 mR, Lt Axillary 3.54 mR, and Rt Axillary 3.03 mR in mamonary measurement but, After application of shielding material, the average of scattered ray was 0.16 mR in thyroid measurement, 0.60 mR, Lt Axillary 0.64 mR, and Rt Axillary 0.54 mR in mamonary measurement showing average scattered ray protection effect of about 82%. This study suggested the manufacturing method of a Jelly-type shielding material, identified the possibilities of researches on mixing various substances with radiology field, and verified the usability of the Jelly-type shielding material as a substitute for existing protection tools.

A Study on the Image Effect of Tube Voltage (관전압(管電壓)이 화상(畵像)에 미치는 영향(影響))

  • Kang, Hong-Seok;Kim, Chang-Kyun;Huh, Joon
    • Journal of radiological science and technology
    • /
    • v.3 no.1
    • /
    • pp.49-55
    • /
    • 1980
  • To know the effect of tube voltage to X-ray film image, authors made an experimental study on the exponential value of applied voltage and the effect of scattered ray in photographic contrast, and obtained the results as follows: 1. The exponential value of tube voltage was under the control of the applied voltage, the kinds of screens and grids, and its existence. The range of its value was from 1.03 to 5.3. 2. The efficiency of X-ray production was directly proportional to the applied voltage, and to oftain the same density, the tube current(mAs) was inversely proportional to applied voltage 3. The production of scattered rays was in proportion to the tube voltage, and the photographic contrast was mainly influenced by the scattered rays.

  • PDF

Utility of Wearing Protective Apron for X-ray of Thick Subject (두꺼운 피사체 X선 촬영 시 보호앞치마 착용의 유용성)

  • Choi, Seong-Kwan;Dong, Kyung-Rae
    • Journal of Radiation Industry
    • /
    • v.11 no.3
    • /
    • pp.167-171
    • /
    • 2017
  • This study examined the effectiveness degree of a protective apron that is taken not to be exposed to the first ray or scattered rays, for X-ray of thick subject like lateral lumbar, and the results are as follows; First, spatial dose by scattered rays is shielded by 3 mmPb protective apron, 86.8% at a distance of 50 cm, 92.7% at 100 cm, and 95.6% at 200 cm, when minimizing the field size, while 89% at a distance of 50 cm, 92.3% at 100 cm, and 95.2% at 200 cm, when maximizing the field size. Second, 1st exposure dose is shielded by 3 mmPb protective apron, 93.7% at a distance of 50 cm, 94.4% at 100 cm, and 93.6% at 200 cm, when minimizing the field size, while 93.7% at a distance of 50 cm, 93.6% at 100 cm, and 94.2% at 200 cm, when maximizing the field size.

SCATTERING CORRECTION FOR IMAGE RECONSTRUCTION IN FLASH RADIOGRAPHY

  • Cao, Liangzhi;Wang, Mengqi;Wu, Hongchun;Liu, Zhouyu;Cheng, Yuxiong;Zhang, Hongbo
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.529-538
    • /
    • 2013
  • Scattered photons cause blurring and distortions in flash radiography, reducing the accuracy of image reconstruction significantly. The effect of the scattered photons is taken into account and an iterative deduction of the scattered photons is proposed to amend the scattering effect for image restoration. In order to deduct the scattering contribution, the flux of scattered photons is estimated as the sum of two components. The single scattered component is calculated accurately together with the uncollided flux along the characteristic ray, while the multiple scattered component is evaluated using correction coefficients pre-obtained from Monte Carlo simulations.The arbitrary geometry pretreatment and ray tracing are carried out based on the customization of AutoCAD. With the above model, an Iterative Procedure for image restORation code, IPOR, is developed. Numerical results demonstrate that the IPOR code is much more accurate than the direct reconstruction solution without scattering correction and it has a very high computational efficiency.