• Title/Summary/Keyword: Scatter x-ray

Search Result 69, Processing Time 0.035 seconds

The Physical Penumbra of the 6MV X-ray (6MV 방사선의 물리학적 Penumbra)

  • Cho Moon-June;Kang Wee-Saing
    • Radiation Oncology Journal
    • /
    • v.9 no.2
    • /
    • pp.333-336
    • /
    • 1991
  • High energy Photon beam has a sharp beam margin due to a less side scatter and the other things. But there still remains a penumbra where the dose changes rapidly in the region near the edge of a radiation beam, although it is short in width. It is suggested that the width of the penumbra depends on the source size, distance from source to diaphragm, source to skin distance, and depth in tissue. However, it is also supposed that the other factors influence the penumbra width. In this paper, we investigate changes of the physical penumbra widths according to various field sizes and depths, by using the three dimensional dosimetry system. As a result, we found that as field size and depth increase, the physical penumbra width also increases.

  • PDF

A Study on the Resolution Analysis of Digital X-ray Images with increasing Thickness of PMMA (조직 등가물질 두께 증가에 따른 디지털 엑스선 영상의 해상도 분석에 관한 연구)

  • Kim, Junwoo
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.173-179
    • /
    • 2021
  • Scattered x-ray generated by digital radiography systems also have the advantage of increasing signals, but ultimately detectability is reduced by decreasing resolution and increasing noise of x-ray images transmitted objects. An indirect method of measuring scattered x-ray in a modulation-transfer function (MTF) for evaluating resolution in a spatial-frequency domain can be considered as a drop in the MTF value corresponding to zero-frequency. In this study, polymethyl methacrylate (PMMA) was used as a patient tissue equivalent, and MTFs were obtained for various thicknesses to quantify the effect of scattered x-ray on resolution. X-ray image signals were observed to decrease by 35 ~ 83% with PMMA thickness increasing, which is determined by the absorption or scattering of x-rays in PMMA, resulting in reduced MTF and increased scatter fraction. The method to compensate for MTF degradation by PMMA resulted in the MTF inflation without considering the optical spreading generated by the indirect-conversion type detector. Data fitting or zero-padding are needed to compensate for MTF more reasonably on edge-spread function or line-spread function.

Contemplation on Usefulness of Plane Cone for Taking Image of Intercondyloid Fossa (무릎 과간와(Intercondyloid fossa) 촬영용 평면 Cone의 유용성에 대한 고찰)

  • Shin, WoonJae
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.7
    • /
    • pp.501-508
    • /
    • 2015
  • There are various Intercondyloid fossa X-ray taking methods. The methods carried out in clinics are Holmblad method, Camp-Conventry method, and Beclere method. Taking image of Intercondyloid fossa is carried a lot as basic examination for diagnosis related to simple fracture and cruciate ligament. Considering the condition and pains of patients, safe method is chosen but because Holmblad method can cause pains to knee part adhering to cassette, it is not easily used. In this study self-produced plane circular cone was attached to a cassette and in the posture for Holmblad method questionnaires of 100 applicants were analyzed to understand cognition on alleviation of pains, and the concentration of imge quality by scattering rays was measured with densitometer by taking human body phantom with X-ray. As a result, in the posture for Holmblad method, cognition on pains was alleviated by average 99%, and the change of concentration of X-ray film taken using phantom by scattering rays decreased statistically significantly compared to the cassette which did not use self-produced plane cone, therefor it is thought that the method can be valuably used in clinics.

Material Discrimination Using X-Ray and Neutron

  • Jaehyun Lee;Jinhyung Park;Jae Yeon Park;Moonsik Chae;Jungho Mun;Jong Hyun Jung
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.4
    • /
    • pp.167-174
    • /
    • 2023
  • Background: A nondestructive test is commonly used to inspect the surface defects and internal structure of an object without any physical damage. X-rays generated from an electron accelerator or a tube are one of the methods used for nondestructive testing. The high penetration of X-rays through materials with low atomic numbers makes it difficult to discriminate between these materials using X-ray imaging. The interaction characteristics of neutrons with materials can supplement the limitations of X-ray imaging in material discrimination. Materials and Methods: The radiation image acquisition process for air-cargo security inspection equipment using X-rays and neutrons was simulated using a GEometry ANd Tracking (Geant4) simulation toolkit. Radiation images of phantoms composed of 13 materials were obtained, and the R-value, representing the attenuation ratio of neutrons and gamma rays in a material, was calculated from these images. Results and Discussion: The R-values were calculated from the simulated X-ray and neutron images for each phantom and compared with those obtained in the experiments. The R-values obtained from the experiments were higher than those obtained from the simulations. The difference can be due to the following two causes. The first reason is that there are various facilities or equipment in the experimental environment that scatter neutrons, unlike the simulation. The other is the difference in the neutron signal processing. In the simulation, the neutron signal is the sum of the number of neutrons entering the detector. However, in the experiment, the neutron signal was obtained by superimposing the intensities of the neutron signals. Neutron detectors also detect gamma rays, and the neutron signal cannot be clearly distinguished in the process of separating the two types of radiation. Despite these differences, the two results showed similar trends and the viability of using simulation-based radiation images, particularly in the field of security screening. With further research, the simulation-based radiation images can replace ones from experiments and be used in the related fields. Conclusion: The Korea Atomic Energy Research Institute has developed air-cargo security inspection equipment using neutrons and X-rays. Using this equipment, radiation images and R-values for various materials were obtained. The equipment was reconstructed, and the R-values were obtained for 13 materials using the Geant4 simulation toolkit. The R-values calculated by experiment and simulation show similar trends. Therefore, we confirmed the feasibility of using the simulation-based radiation image.

Additive manufacturing and mechanical properties evolution of biomedical Co-Cr-Mo alloys by using EBM method

  • Chiba, Akihiko;Kurosu, Shingo;Matsumoto, Hiroaki;Li, Yunping;Koizumi, Yuichiro
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.56.1-56.1
    • /
    • 2012
  • The microstructures and mechanical properties of Co-29Cr-6Mo alloy with C and N additions, produced by additive manufacturing using electron beam melting (EBM) method, were studied using X-ray diffraction, electron back scatter diffraction, transmission electron microscope, Vickers hardness tests, and tensile tests, focusing on the influences on the build direction and the various heat treatments after build. It is found that the microstructures for the as built specimens were changed from columnar to equiaxed grain structure with average grain size of approximately $10-20{\mu}m$ due to the heat treatment employing the reverse transformation from a lamellar (hcp + $Cr_2N$) phase to an fcc. Our results will contribute to the development of biomedical Ni-free Co-Cr-Mo-N-C alloys, produced by EBM method, with refined grain size and good mechanical properties, without requiring any hot workings.

  • PDF

BAT AGN Spectroscopic Survey-III. An observed link between AGN Eddington ratio and narrow emission line ratios

  • Oh, Kyuseok;Schawinski, Kevin;Koss, Michael;Trakhtenbrot, Benny;Lamperti, Isabella;Ricci, Claudio;Mushotzky, Richard;Veilleux, Sylvain;Berney, Simon;Crenshaw, Daniel;Gehrels, Neil;Harrison, Fiona;Masetti, Nicola;Soto, Kurt;Stern, Daniel;Treister, Ezequiel;Ueda, Yoshihiro
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.34.1-34.1
    • /
    • 2016
  • The ultra hard X-ray band (14-195 keV) provides an important and unbiased way to understand black hole growth and relationship to the host galaxy. The Burst Alert Telescope (BAT) instrument on the Swift satellite has surveyed sky to unprecedented sensitivity, improving the number of known hard X-ray sources by more than a factor of 20 to 836 nearby AGN. The BAT AGN Spectroscopic Survey (BASS) is a study for the first large (N>600) and complete sample of ultra hard X-ray selected AGN with optical spectroscopy. In this talk, I present the observed relationship between black hole mass, bolometric luminosity, and Eddington ratio with optical emission line ratios. We show that [NII]/Ha ratio exhibits a significant correlation with Eddington ratio. We propose that the [NII]/Ha ratio is a useful indicator of Eddington ratio with 0.6 dex of scatter, and that it can be used to measure Eddington ratio and thus black hole mass from the measured bolometric luminosity, even for high redshift obscured AGN.

  • PDF

Variation of Image Quality and Dose by Applying Multi-Leaf Collimator for Digital Mammography (디지털 유방촬영장치에서 다엽 조리개 적용으로 인한 화질과 선량의 변화)

  • Kwon, Soon Mu;Kim, Boo Soon;Park, Hyung Jun;Kang, Yeong Han
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.7
    • /
    • pp.535-540
    • /
    • 2015
  • Collimator has important functions with control primary X-ray that decrease radiation exposure dose for patients and reduce scatter ray and make better quality of image. But there are no regulations for X-ray mammography device of collimator, so widely used device adopt rectangularly controlled collimator. Though digital X-ray mammography device expand supply recently, rectangularly controlled collimator of film/screen mode still used. After searching for real condition of beam field with digital mammography, we made a multi-leaf collimator which is able to adjust the beam field in accordance with size and shape of breast, and we measuring up the transitions of image quality, average glandular dose(AGD) and, Dose area product(DAP). There are no significant differences between rectangularly controlled collimator and multi-leaf collimator, and DAP value decreased by 50.72%. As conclusion, there needs to expand the use of multi-leaf collimator for optimum adoption of beam field in digital mammography, and also need to develop an automatic regulation of beam field for reduce of exposure dose to patients.

A Study on Scattered Dose in Operation Room by C-arm Unit (수술중 C-arm 장치의 사용에 따른 공간선량 분포에 관한 연구)

  • An, Sung-Min;Oh, Jung-Hwan;Kim, Sung-Chul
    • Journal of radiological science and technology
    • /
    • v.23 no.2
    • /
    • pp.69-73
    • /
    • 2000
  • This paper studied a C-arm's exposure condition and measured scatter rays by thickness and distance. This study reached the following conclusion. 1. Approrimately exposure dose for a patient using fluoroscopy is as follows : 2. Mostly, an operating room was not shielding by lead and operator put on only apron without thyroid and facial part protection. 3. 0.5 mmPb equivalent's apron shielded about 99% of scattered rays at 60 cm from x-ray tube. 4. Scattered rays are depended on distance and thickness so operators are should be careful when using fluoroscopy by C-arm and if possible use high frequency equipment that has a large output.

  • PDF

Dose Characteristics of Small Radiation Fields for 6MV X-ray of Linear Accelerator (선형가속기의 6MV X선에 대한 소형조사면의 선량측정)

  • Choi, Tae-Jin;Kim, Ok-Bae;Kim, Young-Hoon;Son, Eun-Ik;Kim, In-Hong
    • Radiation Oncology Journal
    • /
    • v.7 no.2
    • /
    • pp.287-291
    • /
    • 1989
  • Radiation dosimetry has been extended to small fields less than $4\times4cm^2$ which may be suitable for irradiation of small intracranial tumors. Special consideration was given to the percentage depth dose and scatter correction factors with 0.14ml ion chamber, film dosimetry and TLD measurement. Calculated dose distributions were compared with measured data.

  • PDF

Protection effect of metal balls against high energy photon beams (고에너지 광자선에 대한 금속구의 차폐효과)

  • 강위생;강석종
    • Progress in Medical Physics
    • /
    • v.9 no.3
    • /
    • pp.137-141
    • /
    • 1998
  • The purposes of this report are to evaluate whether lead ball and steel ball could be used as protective material of radiation and to acquire physical data of them for protecting 4-10 MV X-ray beams. Lead balls of diameter 2.0~2.5mm or steel balls of diameter 1.5~2.0 mm were filled in an acrylic box of uniform width. An MV radiograph of metal balls in a box were taken to ascertain uniformity of ball distribution in the box. Average density of metal ball and linear attenuation coefficient of metal balls for 4~10 MV X -rays were measured. At the time of measurement of linear attenuation coefficient, Farmer ionization chamber was used and to minimize the scatter effect, distance between the ball and the ionization chamber was 70 cm and field size was 5.5cm${\times}$5.5cm. For comparison, same parameters of lead and steel plates were measured. The distribution of metal balls was uniform in the box. The density of a mixture of lead-air was 6.93g/cm$^3$, 0.611 times density of lead, and the density of a mixture of steel-air was 4.75g/cm$^3$, 0.604 times density of steel. Half-value layers of a mixture of lead-air were 1.89 cm for 4 MV X-ray, 2.07 cm for 6 MV X-ray and 2.16 cm for 10 MV X-ray, and approximately 1.64 times of HVL of lead plate. Half-value layers of a mixture of steel-air were 3.24 cm for 4 MV X-ray, 3.70 cm for 6 MV X-ray and 4.15 cm for 10 MV X-ray, and approximately 1.65 times of HVL of lead plate. Metal balls can be used because they could be distributed evenly. Average densities of mixtures of lead-air and steel-air were 6.93g/cm$^3$, 4.75g/cm$^3$ respectively and approximately 1.65 times of densities of lead and steel. Product of density and HVL for a mixture of metal-air are same as the metal.

  • PDF