The purpose of this study was to evaluate the distribution of spatial scatter ray on the chest radiographs of patients on health examination bus. In this paper, we propose a method for minimize unnecessary exposure by measuring the scattered dose after exposure the actual subject and comparing the body mass index (BMI) with the tube current amount mAs. The results of this study showed that the mean BMI of the subjects was $23.31{\pm}3.12$. The mean mAs value was $2.92{\pm}1.19$, which males was higher than females. The mean value of the scatter ray at position 1 in the radiography room was $771.81{\pm}151.15{\mu}Sv/hr$. The mean value of the scatter rays at the position 2 outside the entrance of the radiography room was measured as $53.86{\pm}25.66{\mu}Sv/hr$. As the BMI and mAs was increase the spatial scatter dose was increased at position 1 and position 2 in the photographing room. In order to minimize the exposure dose of scatter ray, radiation workers should shoot the radiation as low as possible within the range that does not impair the quality of the image. It will be necessary to make efforts to not wait for a waiting person near the entrance door of the photographing room.
We studied the optimal location where the radiation dose of radiological technologists is minimally measured. The measured scatter dose has been compared with the distance inverse square law. We measured the primary X-ray with different tube conditions (60, 70, 81 and 90 kVp) and distances (60, 120 and 180 cm). The scatter ray has been measured with various locations (42.5, 52.4 and 62.4 cm for front and back side, 0 to 60 cm with 10 cm interval for left and right side). The results of this study showed that the dose of primary X-ray was attenuated to 20.52 (27.20%), 28.58 (25.20%), 38.82 (26.32%) and 48.20 mR (26.27%) for each tube voltages at 120 cm. In addition, The dose were 7.06 (8.91%), 9.90 (8.73%), 13.64 (9.25%) and 16.60 mR (9.05%) at 180 cm. As for the scatter in front and back side, the attenuated dose were 0.15 mR (23.09%) and 0.15 mR (22.08%) at 120 cm, and 0.07 mR (10.43%) and 0.06 mR (8.83%) at 180 cm. Scatter was decreased in third quadrant. Therefore, it is recommended that radiological technologists should keep long distance from the object.
Kim, Jae-Il;Lee, Eun-Byeol;Cho, Seong-Wook;Noh, Kyeong-Woon;Kang, Keon-Wook
The Korean Journal of Nuclear Medicine Technology
/
제22권1호
/
pp.46-50
/
2018
Purpose Generally, a collimator that installed in front of detector set a direction of gamma ray and remove a scatter ray. By the way, a lateral or oblique scatter ray is detected into crystal through collimator. At this study, we will evaluate a mount of count and spectrums of lateral scatter ray. Materials and Methods We used the SKY LITE (philips, netherlands) as a gamma camera, and $^{99m}Tc$, 1.11 GBq point source as a phantom. we put this point source at backside 50 cm of detector. After acquiring this for 1 min, we turned a detector next 10 degrees. Likely this, we acquired images at every 10 degrees from $0^{\circ}$ to $360^{\circ}$, analyzed images and spectrums. In case of patient study, we choose a 3 phase bone scan patient who had a hand disease, because scatter rays from body would detect on crystal. After acquiring blood flow and blood pool images, we analyzed images and spectrums. Additional, we put a lead gown on patient's hand, body. And then we compared and evaluated 3 type blood pool images (non lead gown, lead gown on a hand and on body). Results In case of phantom study, scatter ray counts at backside ($270^{\circ}-90^{\circ}$) are same with a background count. By the way, counts of scatter ray of oblique side ($0^{\circ}-50^{\circ}$, $220^{\circ}-270^{\circ}$) are 100-600 cps, furthermore, counts at frontside are over 4 Mcps. In case of patient study, a counts of hand blood pool scan are 1510 cps. But counts of hand with lead gown on hands and on body are each 1554 cps, 1299 cps. Conclusion Therefore, even though there is a collimator in front of detector, lateral scatter rays detect on crystal and affect to images and spectrums. Especially, if there is a high activity source at outside of detector when we examine low activity organs like hands or foot, we have to shield and remove the source at outside for a good image.
Purpose : Computed tomographic equipment is essential for diagnosis by means of radiation. With passage of time and development of science computed tomographic was developed time and again and in future examination by means of this equipment is expected to increase. In this connection these authors measured rate of scatter ray generation at front of lead glass for patients within control room of computed tomographic equipment room and outside of entrance door for exit and entrance of patients and attempted to ind out method for minimizing exposure to scatter ray. Material and Method : From November 2001 twenty five units of computed tomographic equipments which were already installed and operation by 13 general hospitals and university hospitals in Seoul were subjected to this study. As condition of photographing those recommended by manufacturer for measuring exposure to sauter ray was use. At the time objects used DALI CT Radiation Dose Test Phantom fot Head (${\oint}16\;cm$ Plexglas) and Phantom for Stomache(${\oint}32\;cm$ Plexglas) were used. For measurement of scatter ray Reader (Radiation Monitor Controller Model 2026) and G-M Survey were used to Survey Meter of Radical Corporation, model $20{\times}5-1800$, Electrometer/Ion Chamber, S/N 21740. Spots for measurement of scatter ray included front of lead glass for patients within control room of computed tomographic equipment room which is place where most of work by gradiographic personnel are carried out and is outside of entrance door for exit and entrance of patients and their guardians and at spot 100 cm off from isocenter at the time of scanning the object. The results : Work environment within computed tomography room which was installed and under operation by each hospital showed considerable difference depending on circumstances of pertinent hospitals and status of scatter ray was as follows. 1) From isocenter of computed tomographic equipment to lead glass for patients within control room average distance was 377 cm. At that time scatter ray showed diverse distribution from spot where no presence was detected to spot where about 100 mR/week was detected. But it met requirement of weekly tolerance $2.58{\times}10^{-5}\;C/kg$(100 mR/week). 2) From isocenter of computed tomographic equipment to outside of entrance door where patients and their guardians exit and enter was 439 cm in average, At that time scatter ray showed diverse distribution from spot where almost no presence was detected to spot with different level but in most of cases it satisfied requirement of weekly tolerance of $2.58{\times}10^{-6}\;C/kg$(100 mR/week). 3) At the time of scanning object amount of scatter ray at spot with 100 cm distance from isocenter showed considerable difference depending on equipments. Conclusion : Use of computed tomographic equipment as one for generation of radiation for diagnosis is increasing daily. Compared to other general X-ray photographing field of diagnosis is very high but there is a high possibility of exposure to radiation and scatter ray. To be free from scatter ray at computed tomographic equipment room even by slight degree it is essential to secure sufficient space and more effort should be exerted for development of variety of skills to enable maximum photographic image at minimum cost.
Computed Radiography(CR) is a relatively new technology that relies on an image plate(IP) as an alternate x-ray sensor to screen/film. Standard CR cassettes do not have lead foil behind the IP to control scatter radiation. The result of this study indicate that such control is needed. In most screen/film cassettes, that lines the rear of the cassette eliminates back scatter radiation. This study was performed to Investigate on the effects of back scatter in CR images by size of exposure field, distance between the CR cassette and the wall of radiography room. 1. It showed artifacts from hinges and clips located on the back of CR cassette by back scatter radiation. 2. The greater effects of back scatter radiation in CR images was attributed to the greater size of exposure field and the longer distance between the CR cassette and the wall of radiography room.
Digital radiography imaging systems can also help diagnose lesions in patients, but if x-rays that enter the human body cause scatter x-ray due to interaction with substances, they affect the signal and noise characteristics of digital x-ray images. To regard the human body as polymethyl methacrylate (PMMA) and observe the properties of scattered x-ray generated from PMMA on x-ray images, we analyze signal and noise in the spatial domain as well as noise-power spectrum (NPS), and detective quantum efficiency (DQE) at zero frequency. As PMMA thickness increased, signals decreased, the noise increased, and NPS degradation was identified in overall spatial frequencies. Based on these characteristics, zero-frequency performance was also shown to be degraded. Comparative analysis with Monte-carlo simulations will need to be made to analyze the zero-frequency performance by scattered x-ray of indirect conversion-type x-ray detectors more quantitatively.
In Recent years, there has been a noticeable increase in the global incidence of breast cancer, with approximately 2.3 million cases of female breast cancer reported worldwide in 2020. Numerous studies are currently underway to enhance the accuracy of breast cancer diagnosis through the development of digital mammography detectors. This study aims to create Monte Carlo simulation-based mammographic anti-scatter grids and investigate their utility in evaluating the performance of digital mammography detector. Two types of mammographic anti-scatter grids, MAM-CP and Senographe 600T HF, were created using Monte Carlo simulation software (MCNPX 2.7.0), with grid ratios of 3.7 : 1 and 5 : 1, respectively. The grid physical characteristics (sensitivity, exposure factor, contrast improvement ratio) were calculated based on the KS C IEC60627 in the simulations using two X-ray qualities, RQA-M2 (28 kVp) and MW4 (35 kVp). As the X-ray tube voltage increased from 28 kVp to 35 kVp, sensitivity and exposure factor exhibited a decreasing trend, while contrast improvement ratio demonstrated an increasing trend. With an increase in grid ratio from 3.7 : 1 to 5 : 1, all physical characteristics showed an upward trend. Our results were consistent with a previous study that conducted measurements of physical properties using a real phantom. However, the pattern of change in the contrast improvement ratio with X-ray tube voltage differed from the previous study.
In order to establish the photographic effects and sensitivity of various screens, fluorescence meter is used with convenience. When the radiation quality has been fixed the fluorescence has increased in proportion to X-ray dose. However, the response of fluorescence meter has the dependency of X-ray quality in accordance with KVP. as well as the difference of screen and scatter fraction can influence on the response of fluorescence meter. Using accurate fluorescence meter as a radiation detecter and as for a proper supervision the sensitive materials, we have to aware of the meter's dependency of X-ray quality and the scatter fraction.
The purpose of this study was to find out the difference of radiation dose value through energy, exposure number, fluoroscopy time, the number of days of exposed scatter X-ray when TLD and OSLD is used in diagnostic radiology. The difference of value were measured by relative ratio and interval. Energy makes high relative ratio of TLD($1.81{\pm}0.41$) than OSLD($1.40{\pm}0.26$), exposure number makes high of OSLD($1.40{\pm}0.26$) than TLD($2.10{\pm}0.10$). There are no significant differences between relative ratio of TLD and OSLD in fluoroscopy time and the number of days of exposed scatter X-ray. But interval of relative ratio in the number of days of exposed scatter X-ray was narrowed in less 0.2. That means, the measurement of scatter X-ray could more confident in TLD and OSLD than the measurement of direct ray. In conclusion, we have to recognize the relative ratio of TLD and OSLD could be vary depending on exposed condition of radiation. And in some cases, double test of TLD and OSLD get more creditable results of dose value.
In diagnostic radiology, the imaging system has been changed from film/screen to digital system. However, the method for removing scatter radiation such as anti-scatter grid has not kept pace with this change. Therefore, authors have devised the indirect flat panel detector (FPD) system with net-like lead in substrate layer which can remove the scattered radiation. In clinical context, there are many radiographic examinations with angulated incident X-ray. However, our proposed FPD has net-like lead foil so the vertical lead foil to the angulate incident X-ray would have bad effect on its performance. In this study, we identified the effect of vertical/horizontal lead foil component on the novel system's performance and improved the structure of novel system for clinical usage with angulated incident X-ray. Grid exposure factor and image contrast were calculated to investigate various structure of novel system using Monte Carlo simulation software when the incident X-ray was tilted ($0^{\circ}$, $15^{\circ}$, and $30^{\circ}$ from the detector plane). More photons were needed to obtain same image quality in the novel system with vertical lead foil only then the system with horizontal lead foil only. An optimal structure of novel system having different heights of its vertical and horizontal lead foil component showed improved performance compared with the novel system in a previous study. Therefore, the novel system will be useful in a clinical context with the angulated incident X-ray if the height and direction of lead foil in the substrate layer are optimized as the condition of conventional radiography.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.