• Title/Summary/Keyword: Scatter Factor

Search Result 81, Processing Time 0.022 seconds

Effect of Heat Treatment Conditions on Corrosion and Hydrogen Diffusion Behaviors of Ultra-Strong Steel Used for Automotive Applications

  • Park, Jin-seong;Seong, Hwan Goo;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.267-276
    • /
    • 2019
  • The purpose of this study was to examine the influence of conditions for quenching and/or tempering on the corrosion and hydrogen diffusion behavior of ultra-strong automotive steel in terms of the localized plastic strain related to the dislocation density, and the precipitation of iron carbide. In this study, a range of analytical and experimental methods were deployed, such as field emission-scanning electron microscopy, electron back scatter diffraction, electrochemical permeation technique, slow-strain rate test (SSRT), and electrochemical polarization test. The results showed that the hydrogen diffusion parameters involving the diffusion kinetics and hydrogen solubility, obtained from the permeation experiment, could not be directly indicative of the resistance to hydrogen embrittlement (HE) occurring under the condition with low hydrogen concentration. The SSRT results showed that the partitioning process, leading to decrease in localized plastic strain and dislocation density in the sample, results in a high resistance to HE-induced by aqueous corrosion. Conversely, coarse iron carbide, precipitated during heat treatment, weakened the long-term corrosion resistance. This can also be a controlling factor for the development of ultra-strong steel with superior corrosion and HE resistance.

Dose Calculation of Photon Beam with Wedge Filter for Radiation Therapy Planning System

  • Cheong, Kwang-Ho;Suh, Tae-Suk;Lee, Hyoung-Koo;Choe, Bo-Young
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.41-41
    • /
    • 2003
  • Purpose: Even if the wedge filter is widely used for the radiation therapy to modify the photon beam intensity, the wedged photon beam dose calculation is not so easy. Radiation therapy planning systems (RTPS) have been used the empirical or semi-analytical methods such as attenuation method using wedge filter parameters or wedge filter factor obtained from measurement. However, these methods can cause serious error in penumbra region as well as in edge region. In this study, we propose the dose calculation algorithm for wedged field to minimize the error especially in the outer beam region. Materials and Method: Modified intensity by wedge filter was calculated using tissue-maximum ratio (TMR) and scatter-maximum ratio (SMR) of wedged field. Profiles of wedged and non-wedged direction was also used. The result of new dose calculation was compared with measurement and the result from attenuation method. Results: Proposed algorithm showed the good agreement with measurement in the high dose-gradient region as well as in the inner beam region. The error was decreased comparing to attenuation method. Conclusion: Although necessary beam data for the RTPS commissioning was increased, new algorithm would guarantee the improved dose calculation accuracy for wedged field. In future, this algorithm could be adopted in RTPS.

  • PDF

New strut-and-tie-models for shear strength prediction and design of RC deep beams

  • Chetchotisak, Panatchai;Teerawong, Jaruek;Yindeesuk, Sukit;Song, Junho
    • Computers and Concrete
    • /
    • v.14 no.1
    • /
    • pp.19-40
    • /
    • 2014
  • Reinforced concrete deep beams are structural beams with low shear span-to-depth ratio, and hence in which the strain distribution is significantly nonlinear and the conventional beam theory is not applicable. A strut-and-tie model is considered one of the most rational and simplest methods available for shear strength prediction and design of deep beams. The strut-and-tie model approach describes the shear failure of a deep beam using diagonal strut and truss mechanism: The diagonal strut mechanism represents compression stress fields that develop in the concrete web between diagonal cracks of the concrete while the truss mechanism accounts for the contributions of the horizontal and vertical web reinforcements. Based on a database of 406 experimental observations, this paper proposes a new strut-and-tie-model for accurate prediction of shear strength of reinforced concrete deep beams, and further improves the model by correcting the bias and quantifying the scatter using a Bayesian parameter estimation method. Seven existing deterministic models from design codes and the literature are compared with the proposed method. Finally, a limit-state design formula and the corresponding reduction factor are developed for the proposed strut-andtie model.

The Related Factors to Workplace Bullying in Nursing: A Systematic Review and Meta-analysis (간호사간 직장 내 괴롭힘 관련변인에 대한 체계적 문헌고찰과 메타분석)

  • Kang, Jiyeon;Lee, Minju
    • Korean Journal of Adult Nursing
    • /
    • v.28 no.4
    • /
    • pp.399-414
    • /
    • 2016
  • Purpose: The purpose of this study was to review and identify factors relevant to workplace bullying in nursing. Methods: Twenty-three studies that met the criteria were selected from a sample of twenty-six studies. These articles were retrieved from a central literature databases (N=13,241). The total correlational effect size (ESr) for each related factor was calculated from Fisher's Zr. A funnel plot inspection (similar to scatter plot) with a trim-and-fill method was used to assess the publication bias of the meta-analyzed studies. Results: From the systematic review, fifty-one factors were identified as having an influencing effect. Fourteen factors (five individual and nine organizational factors) were eligible for meta-analysis. The individual factors included, self-esteem (ESr=-.31), psychological capital (ESr=-.26), and marital status (ESr=-.06) which were significantly correlated with workplace bullying. Organizational factors included, organizational tolerance (ESr=.48), supervisor incivility (ESr=.47), job stress (ESr=.46), group morale (ESr=-.36), group support (ESr=-.35), supervisor leadership (ESr=-.35), group identity (ESr=-.33), and structural empowerment (ESr=-.27). These factors were significantly correlated with workplace bullying. There were no publication biases except for both individual and organizational factors. Conclusion: Organizational factors have more of an greater impact than individual factors on workplace bullying. The results of this study support the need for intervention at the organizational level.

Aerosol Indirect Effect Studies derived from the Ground-based Remote Sensings (지상원격탐사를 이용한 에어러솔 간접효과 연구)

  • Kim Byung-Gon;Kwon Tae-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.2
    • /
    • pp.235-247
    • /
    • 2006
  • Aerosol indirect radiative forcing of climate change is considered the most uncertain forcing of climate change over the industrial period, despite numerous studies demonstrating such modification of cloud properties and several studies quantifying resulting changes in shortwave radiative fluxes. Detection of this effect is made difficult by the large inherent variability in cloud liquid water path (LWP): the dominant controlling influence of LWP on optical depth and albedo masks any aerosol influences. Here we have used ground-based remote sensing of cloud optical depth (${\tau}_c$) by narrowband radiometry and LWP by microwave radiometry to determine the dependence of optical depth on LWP, thereby permitting examination of aerosol influence. The method is limited to complete overcast conditions with liquid-phase single layer clouds, as determined mainly by millimeter wave cloud radar. The results demonstrate substantial (factor of 2) day-to-day variation in cloud drop effective radius at the ARM Southern Great Plains site that is weakly associated with variation in aerosol loading as characterized by light-scattering coefficient at the surface. The substantial scatter suggests the importance of meteorological influences on cloud drop size as well, which should be analyzed in the further intensive studies. Meanwhile, it is notable that the decrease in cloud drop effective radius results in marked increase in cloud albedo.

Entrance Surface Dose according to Dose Calculation : Head and Wrist (피폭선량 산출을 통한 피부입사선량 계산: 머리 및 손목을 중심으로)

  • Sung, Ho-Jin;Han, Jae-Bok;Song, Jong-Nam;Choi, Nam-Gil
    • Journal of radiological science and technology
    • /
    • v.39 no.3
    • /
    • pp.305-312
    • /
    • 2016
  • This study were compared with the direct measurement and indirect dose methods through various dose calculation in head and wrist. And, the modified equation was proposed considering equipment type, setting conditions, tube voltage, inherent filter, added filter and its accompanied back scatter factor. As a result, it decreased the error of the direct measurement than the existing dose calculation. Accordingly, diagnostic radiography patient dose comparison would become easier and radiogrphic exposure control and evaluation will become more efficient. The study findings are expected to be useful in patients' effective dose rate evaluation and dose reduction.

The Variation of PSF Induced Enlarged Wedged Fields (확장된 쐐기조사야에 의한 조직산란계수의 변화)

  • Lee, Jeong-Woo;Cho, Hwa-Seop;Park, Seong-Ryul
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.10 no.1
    • /
    • pp.97-101
    • /
    • 1998
  • In recent days, although many kinds of beam modifiers are developing and using for clinical purposes in accordance with progressing medical engineering, physical wedges are preferred to use as a beam modifier by a lot of institutions until now because of cost, complexities of dosimetry and mechanical uncertainties. According to progressing technology, available field size of wedge is more enlarger than that of old model LINAC. Because field size dependence of wedged fields increases in new model LINAC, we was trying to know that how much different PSFs are in enlarged wedged fields compared with open fields. In small or middle size of fields($4{\times}4{\sim}15{\times}15cm$), there are only a few percents of PSF variation between open and wedged fields. But there are $2{\sim}8\%\;variations\;in\;relatively\;large\;fields(20{\times}20{\sim}30{\times}40cm)$.

  • PDF

A Study on the High Temperature Creep Crack Growth Properties for Steam Turbine Rotor Steel under Static and Cyclic Loading Condition (화력 발전용 고압 로터강의 정하중 및 변동하중하의 고온 크립 균열전파 특성에 관한 연구)

  • O, Se-Gyu;Jeong, Sun-Eok
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.207-207
    • /
    • 1991
  • The crack length measurements by electrical potential(EP) method for 1% Cr-Mo-V and 12%Cr steel of 0.5T-CT specimen were performed at $500^{\circ}C, 600^{\circ}C 700^{\circ}C$, and an applicability of stress intensity factor($K_I$), net section stress($\sigma_{net}$), $C^*$-ingegral and $C_t$ parameter was studied to measure creep crack growth rate(da/dt) with side groove and without side groove under static and cyclic loading condition. The experimental result could be summarized as follows: 1) Crack measurement by EP method was available and coincided with the Johnson,s analytical equation. 2) da/dt by $K_I$ and $\sigma_{net}$ was not adequate because of the wide scatter band according to load and temperature, but $C^*$-integral, except for transition region, was adequate. 3) $C_t$ parameter showed the best fitted line through total creep region without relating with both temperature and load condition. 4) Under the cyclic loading condition, $C_t$ parameter was proper to extimate da/dt. And it was shown that da/dt for 1% Cr-Mo V steel under the static condition(R=1) was 1.16 times faster than the case under cyclic loading(R=0), and for 12% Cr steel, 1.43 times.

A Study on the High Temperature Creep Crack Growth Properties for Steam Turbine Rotor Steel under Static and Cyclic Loading Condition (화력 발전용 고압 로터강의 정하중 및 변동하중하의 고온 크립 균열전파 특성에 관한 연구)

  • O, Se-Gyu;Jeong, Sun-Eok
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.67-75
    • /
    • 1991
  • The crack length measurements by electrical potential(EP) method for 1% Cr-Mo-V and 12%Cr steel of 0.5T-CT specimen were performed at $500^{\circ}C, 600^{\circ}C 700^{\circ}C$, and an applicability of stress intensity factor($K_I$), net section stress($\sigma_{net}$), $C^*$-ingegral and $C_t$ parameter was studied to measure creep crack growth rate(da/dt) with side groove and without side groove under static and cyclic loading condition. The experimental result could be summarized as follows: 1) Crack measurement by EP method was available and coincided with the Johnson, s analytical equation. 2) da/dt by $K_I$ and $\sigma_{net}$ was not adequate because of the wide scatter band according to load and temperature, but $C^*$-integral, except for transition region, was adequate. 3) $C_t$ parameter showed the best fitted line through total creep region without relating with both temperature and load condition. 4) Under the cyclic loading condition, $C_t$ parameter was proper to extimate da/dt. And it was shown that da/dt for 1% Cr-Mo V steel under the static condition(R=1) was 1.16 times faster than the case under cyclic loading(R=0), and for 12% Cr steel, 1.43 times.

  • PDF

Probabilistic Approach of Stability Analysis for Rock Wedge Failure (확률론적 해석방법을 이용한 쐐기파괴의 안정성 해석)

  • Park, Hyuck-Jin
    • Economic and Environmental Geology
    • /
    • v.33 no.4
    • /
    • pp.295-307
    • /
    • 2000
  • Probabilistic analysis is a powerful method to quantify variability and uncertainty common in engineering geology fields. In rock slope engineering, the uncertainty and variation may be in the form of scatter in orientations and geometries of discontinuities, and also test results. However, in the deterministic analysis, the factor of safety which is used to ensure stability of rock slopes, is based on the fixed representative values for each parameter without a consideration of the scattering in data. For comparison, in the probabilistic analysis, these discontinuity parameters are considered as random variables, and therefore, the reliability and probability theories are utilized to evaluate the possibility of slope failure. Therefore, in the probabilistic analysis, the factor of safety is considered as a random variable and replaced by the probability of failure to measure the level of slope stability. In this study, the stochastic properties of discontinuity parameters are evaluated and the stability of rock slope is analyzed based on the random properties of discontinuity parameters. Then, the results between the deterministic analysis and the probabilistic analysis are compared and the differences between the two analysis methods are explained.

  • PDF