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Probabilistic Approach of Stability Analysis for
Rock Wedge Failure

Hyuck-Jin Park*

ABSTRACT : Probabilistic analysis is a powerful method to quantify variability and uncertainty common in
engineering geology fields. In rock slope engineering, the uncertainty and variation may be in the form of scatter
in orientations and geometries of discontinuities, and also test results. However, in the deterministic analysis, the
factor of safety which is used to ensure stability of rock slopes, is based on the fixed representative values for each
parameter without a consideration of the scattering in data. For comparison, in the probabilistic analysis, these
discontinuity parameters are considered as random variables, and therefore, the reliability and probability theories
are utilized to evaluate the possibility of slope failure. Therefore, in the probabilistic analysis, the factor of safety
is considered as a random variable and replaced by the probability of failure to measure the level of slope stability.
In this study, the stochastic properties of discontinuity parameters are evaluated and the stability of rock slope is
analyzed based on the random properties of discontinuity parameters. Then, the results between the deterministic
analysis and the probabilistic analysis are compared and the differences between the two analysis methods are

explained.

INTRODUCTION

Most engineering geology problems involve un-
certainty and variability, which are inevitably
difficult to establish and predict. Uncertainty and
variability are caused by insufficient information
of site conditions and incomplete understanding
of a failure mechanism. In rock slope stability
analysis, the uncertainty and variability may be in
the form of a large scatter in attitude data and the
geometry of joint and also test results. Therefore,
one of the most difficult jobs in rock slope
engineering is the selection of the single representative
values from widely varied data. Therefore, many
engineers and researchers have attempted to limit
and quantify the variation and uncertainty in their
data and have adopted various methods to indicate
the uncertainty and variation in the results of analysis.
Casagrande (1965) noted the nature and importance
of ‘the calculated risk’ in geotechnical engineering.
In several examples, he showed how the unknown
risks affected the stability of projects. Peck (1969)
suggested the observational method to maintain
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control over uncertainty by revising estimates of
site conditions and parameters when additional
information becomes available. However, as Mostyn
and Small (1987) have discussed, traditionally most
engineers have taken the variation of their data into
account by a selection of i) the appropriate values
for input parameters into analysis and ii) an ap-
propriate factor of safety.

Probability theory and statistical techniques,
have been applied to engineering geology field to
deal properly with variability and uncertainty.
Application of probabilistic analysis has provided
an objective tool for quantifying and modeling
variability and uncertainty. However, although several
probabilistic analysis methods have been proposed
to consider and quantify the uncertainty and variability
for rock slope stability, the techniques have been
limited mostly to purely theoretical investigation.
In this paper, an application of the probabilistic
method to practical problems in rock slope stability
analysis will be introduced. For this objective, a
rock cut in North Carolina is selected and the
probabilistic approach is applied to analyze the
stability of wedge failure in the area. Then the
results of the probabilistic analysis are compared
to the results of the deterministic analysis. In
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addition, the stochastic properties of discontinuity
geometry and strength parameters which are defined
to use in the probabilistic analysis will be discussed.

DETERMINISTIC METHOD

Most input parameters (e.g. material strength,
joint geometry and pore water pressures) in the
factor of safety calculation are precisely unknown
because of the uncertainty and variations in testing,
modeling, and spatial variation. Thus, each of these
should be considered as a random variable. The
analysis with different values for each of these
parameters can result in different values of factor of
safety. Consequently, the factor of safety itself is
also a random variable depending on many input
variables.

However, in the deterministic analysis, the
factor of safety calculation requires fixed values
for parameters that actually exhibit a degree of
uncertainty. Therefore, the conventional factor of
safety does not reflect the degree of uncertainty of
these parameters. In most cases, the mean value of
these parameters is assigned as a fixed value but
some engineers tend to select values higher or
lower than the mean, due to uncertainty and variation
in input parameters. This can yield very different
factor of safety values for the same project. Con-
sequently, inconsistency is likely to exist among
engineers and between applications by the same
engineer. In addition, the same factor of safety (FS)
can be associated with a large range of reliability level
and thus FS is not a consistent measure of safety.
As Harr (1987) pointed out, the probability of failure
can vary over many order of magnitude for the
same deterministic factor of safety in the same
project. Another disadvantage in the deterministic
analysis is that the factor of safety values cannot be
compared for different modes of failure. According to
Einstein and Baecher (1982), the mechanically
equivalent definitions of failure have different factor of
safety values. Therefore, as Tabba (1984) pointed
out, there are shortcomings of the deterministic
analysis; 1) inability to account for variations in
properties and conditions, 2) difficulty in portraying
the relative importance of various sets of data in
the overall stability condition, and 3) inability to
predict failure in cases where failure has actually
occurred.

PROBABILISTIC METHOD

The probabilistic analysis, as an alternative to
the deterministic approach, has been introduced to
consider and quantify the uncertainty and variability in
parameters and the analytical model. In this analysis,
the factor of safety is considered as a random
variable and can be replaced by the probability of
failure to measure the level of slope stability. The
probability of failure is simply defined as the
probability of having FS<1 under the probability
density function (PDF) of factor of safety. The
physical meaning of probability of failure can be
considered as the percentage of slopes that slide
compared to a certain number of geometrically
similar slopes (Shuk, 1970). However, because we
consider only one specific slope, the probability of
failure is interpreted as a measure of relative
likelihood of occurrence of failure (Coates, 1981).

In general, the probabilistic analysis is performed
in two steps: The first step consists of analysis of
available geotechnical data to determine the basic
statistical parameters, such as mean and variance,
and probability density function which enables us
to represent and predict the random property of
geotechnical parameters. The mean value of the
PDF represents the best estimate of the random
variable and the standard deviation or coefficient
of variation (c.0.v.) of the PDF represents an
assessment of the uncertainty.

In the second step, risk analysis of slope
stability is accomplished using the basic statistical
parameters and probability density function deter-
mined in the previous step. Two methods of risk
analysis are commonly used, the Monte Carlo
simulation and First Order Second Moment method
(FOSM). In this study, the Monte Carlo simulation
method is used to evaluate the probability of
failure. This simulation method can be used when
the PDFs of each component variable are completely
prescribed. In this procedure, values of each
component are generated randomly by its respective
PDFs and then these values are used to evaluate the
factors of safety. By repeating this calculation, the
probability of failure can be estimated by the
proportion of calculations where the safety factor is
less than one. This calculation is reasonably
accurate only if the number of simulations is very
large.
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SITE INTRODUCTION

The study area is the rock cut along Interstate
highway 26 in North Carolina U.S.A., which is
under construction. This area is located within the
Blue Ridge Belt, a geologic province bounded to
the west by the Great Smoky thrust fault and to the
east by the Brevard Fault zone. This province is
one of the several physiographic provinces which
comprise the Appalachian Highlands. This province
consists of high metamorphic grade, Middle
Proterozoic basement to early Paleozoic, off-shelf
cover sediments and Paleozoic igneous intrusives.
Rocks underlying this study area are Pre-Cambrian
in age (950~1250 m.y.). Granite gneiss, biotite
gneiss and schist, quartz monzonite, and migmatitic
gneiss make up the bulk of these probably metase-
dimentary rocks that have been intruded by younger
granitic rocks and are referred to as the Cranberry
Granite Gneiss (Fig. 1).

The Cranberry granite gneiss is the major lithology
in this area and is a medium-grained, even-
textured rock that varies from light to dark gray in
color. It is composed of quartz, orthoclase, muscovite,
biotite, and occasionally hornblende. The gneiss
contains many small portions of mica gneiss, mica
schist, hornblende gneiss, schistose basalt, and
pegmatite. The unit also contains a moderate amount
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of quartz veins. A large number of discontinuity
orientations and geometries were measured from
the field in this study and their stochastic properties
were analyzed by author (Park, 1999). In addition,
several core samples for estimation of discontinuity
strength parameters were obtained and used for
direct shear tests.

ANALYSIS FOR STOCHASTIC PROPERTIES
OF DISCONTINUITY PARAMETERS

As discussed previously, the random or stochastic
properties of geological and geotechnical parameters
for slope stability should be defined first in the
probabilistic analysis. Using the statistical inference,
the probabilistic distribution and statistical parameters
in the geological and geotechnical environment is
defined. The statistical inference is the procedure
that information obtained from sampled data is
used to make generalizations about the populations
from which the samples were obtained (Ang and
Tang, 1975). This is an important objective in this
study and also an important procedure used to
obtain accurate and proper analysis results. This is
because as noted by Kulatilake et al. (1985), a
different choice of density distribution affects
significantly the probability of slope failure. In the
current study, discontinuity orientation, length, spacing
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and strength parameters are considered as random
variable and defined their stochastic properties.

Discontinuity orientation

One of the major reasons to carry out a statistical
analysis for discontinuity properties is to find a proper
probability distribution representing discontinuity
parameters and their random properties. There have
been a number of studies to determine the appropriate
probability density distribution for a discontinuity
orientation distribution. Fisher (1953) proposed a
distribution on the basis of the assumption that a
population of orientation values was distributed about
a true value. This assumption is similar to the idea of
discontinuity normals being distributed about a true
value within a set. He assumed that the probability,
P(6), that an orientation value selected randorly from
the population makes an angle of between 6 and db
with the true orientation is given by

P(0) = ek do 1

where & is a constant controlling the shape of the
distribution and is commonly referred to as Fisher's
constant, which is a measure of the degree of
clustering within the population. This constant is a
variable expressed as follow;
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Combining the two equations above, the following
probability density distribution is obtained
ksin® e’
f(9)=? 3
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In view of its simplicity and flexibility, the
Fisher distribution provides a valuable model for
discontinuity orientation data (Priest, 1993). However,
one disadvantage of this distribution is that the
distribution provides only an approximation for
asymmetric data because this distribution is a
symmetric distribution. Therefore, many researchers
have proposed a number of models that can provide
better fits for asymmetric orientation data. However,
these models are more complex in their parameter
estimation. Futhermore, because of their cornplexity,
a generation of random values from those asymmetric

Fig. 2. Lower hemisphere stereographic projection of
discontinuity normals in the study area.

orientation distributions is very difficult to accomplish
and subsequently the analyses based on this proba-
bilistic density function are difficult to perform.
Therefore, the author decided to use this distribution
for discontinuity orientation in this study.

Total 279 discontinuity orientations were measured
from the scanline method on outcrops and from
borehole for this study (Fig. 2). However, according
to the author's field survey, the critical discontinuities
affecting rock slope stability in this area are the
foliations. Therefore, the foliations are mainly
dealt with in this study. After the measurement in
the field, the discontinuity orientations were corrected
for sampling bias using the weighting factor
suggested by Terzaghi (1965) and Priest (1985).
The sampling bias was caused by linear sampling
method such as scanline sampling method and
borehole sampling method because the sampling
line tends to intersect preferentially those discontin-
uities whose normals make small angles to the
sampling line (Priest, 1985). Using the corrected
orientation data, the orientation sets were identified
by applying algorithm proposed by Mahtab and
Yegulp (1982). In the study, CANDO program that
has been developed by Priest and his colleagues at
University of South Australia on the basis of
Mahtab and Yegulp (1982)'s algorithm, was used
because this program uniquely provides information
about degree of clustering, that is Fisher constant.
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Fig. 3. Lower hemisphere stereographic projection of
clustered foliation normals in 1-26 Area.

The clustering results of foliation orientation mea-
sured in this study area were plotted in Fig. 3.
Total three different foliation sets were clustered in
this area and their mean orientation are 155/22,
079/60 and 273/87 for J1, J2 and J3, respectively.
Fisher constants are 72, 29 and 20 for J1, J2 and
J3, respectively.

Discontinuity length

The length of a discontinuity is defined as the
distance over which the tensile and cohesive strength
of the rock substance has been reduced or lost.
Knowledge of the length of discontinuities in a
rock mass is important in the prediction of rock
mass behavior and the analysis of rock slopes
because the discontinuity lengths influence the size
of blocks that may be formed. However, in the
deterministic analysis such as limit equilibrium
method, the length of discontinuity is not considered
in procedure of stability analysis. That is, the
length data is not accounted for the calculation of FS
either for kinematic analysis. In comparison, in the
proba- bilistic analysis, the discontinuity lengths can
be involved in many different ways. Especially in
this study, the length is considered as the concept
of persistence. That is, the probability that the joint
length is long enough to form a block able to slide
is evaluated and then this probability is multiplied
by the probability of slope failure which was

commonly evaluated on the basis of the assumption
that the joint is fully persistent. Consequently, this
approach can overcome the limitation of the con-
servative and deterministic analysis which assumes a
100% persistent joint. Therefore, this new approach
offers advancement beyond one of the disadvantages
in the deterministic analyses.

Because the borehole sampling method by which
the most of discontinuity data was obtained in the
study does not provide information on discontinuity
size due to small diameter of cores, the limited
amount of discontinuity length data were provided.
Therefore, the probability density function for
discontinuity length is decided from the previous
researches and literatures.

A lognormal distribution has been proposed as a
representative distribution model by many different
researchers (McMahon, 1971; Bridge, 1976; Barton,
1978; Einstein ef al., 1980). However, according to
Priest and Hudson (1981), the lognormal distribution
is a biased distribution caused by scanline sampling.
They have attempted to derive the form of uncor-
rected distribution from the corrected distributions,
when the negative exponential, uniform and normal
distributions are considered as possible correct
distributions. Their results show that when the
corrected distribution has a negative exponential
distribution, the lognormal distribution is obtained as
an uncorrected distribution using graphical and
analytical methods. Therefore, the negative expo-
nential distribution is an appropriate distribution and
it also has an advantage that sampling bias caused by
scanline method can be canceled out by adopting this
distribution. Consequently, the exponential distribution
is commonly used in probabilistic analysis to
represent a stochastic property of the discontinuity
length and also in this study. This is because
sufficient theoretical and practical grounds have been
provided in the literature and the assignment of a
negative exponential density distribution is the most
efficient way to remove the sampling bias.

The mean length of foliation obtained from field
survey was 2.4 m. However, due to the limitation
of the number of data, all three sets of foliation
were assigned the same mean value.

Discontfinuity spacing

The purpose of discontinuity spacing measurement
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is to obtain the size of the blocks which compose
a rock mass. Stability analysis and design are
strongly dependent on the block size because weight
forces, forces due to water pressure, and failure
mechanism depend on the block size. Although
mean discontinuity spacing value provides a direct
measure of spacing data, several previous studies
have tried to represent the distribution of measured
data by statistical analysis and description because
the spacing data is considered as a random variable.

Approximately 100 spacing values were collected
in field by author (Fig. 4) and then in order to
determine the appropriate distribution of spacing
in the study, Chi-square goodness-of-fit tests were
performed. The lognormal and negative exponential
distributions, which are two candidate distribution
models for spacing, were tested in this study (Table
1). This is because the previous researchers proposed
and utilized the distribution, and those theoretical
distributions are bounded at zero and are skewed
to the right and therefore, those characteristics are
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Fig. 4. Histogram of discontinuity spacing.

similar to the properties of the spacing distribution.
On the basis of field measurements and theoretical
considerations, Priest and Hudson (1976) concluded
that the distribution of discontinuity spacing for
various sedimentary rock types could be modeled
by the negative exponential probability density
function. This conclusion has been supported by
others, such as Wallis and King (1980) and Baecher
(1983). However, some publications such as Rouleau

Table 1. Chi-square test results for relative goodness of fit in spacing data.

Observed Theoretical Frequency (e;) (nj-€)*fe;
Interval
Frequency (n;) Exponential Lognormal Exponential Lognormal
0-0.15 0 2.58 0.55 2.59 0.55
0.15-1.00 18 12.40 15.16 253 0.53
1.00-1.85 5 9.28 11.57 1.98 373
1.85-2.70 7 6.96 7.15 0.001 0.003
2.70-3.55 11 472 4.60 8.34 8.89
3.55-4.40 4 3.90 3.10 0.002 0.26
4.40-5.25 1 292 2.18 1.27 0.64
5.25-6.10 | 2.19 1.58 0.65 021
6.10-6.95 1 1.64 1.17 025 0.03
6.95-7.80 0 122 0.89 1.23 0.89
7.80-8.65 0 092 0.69 0.92 0.69
8.65-9.50 0 0.69 0.54 0.69 0.54
9.50-10.35 2 0.51 043 4.26 5.66
10.35-11.20 1 0.39 0.35 097 1.21
11.20-12.05 0 0.29 0.29 0.29 0.29
12.05-12.90 1 022 0.24 2.83 247
12.90-13.75 0 0.16 0.20 0.16 0.19
13.75-14.60 1 0.12 0.16 0.12 0.17
14.60-15.45 0 0.09 0.14 0.09 0.14
15.45-16.30 0 0.07 0.12 0.07 0.12
16.30-17.15 0 0.05 0.10 0.05 0.10
17.15-18.00 0 0.04 0.09 0.04 0.09
>18.00 0 0.03 0.08 0.03 0.08
51.43 51.37 29.35 27.47
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and Gale (1985) and Sen and Kazi (1984) proposed
the lognormal probability distribution for disconti-
nuity spacing.

A total of 52 data points in the same set were
used to evaluate the goodness of fit. The calculated
2(n;-e;)*/e; values of both distributions are smaller
than Cy g5 29, 31.4, obtained from the Chi-Square
distribution table at 5% significant level with 20
degree of freedom (Table 1). Therefore, both the
lognormal distribution and the exponential distribu-
tion appear to be valid for spacing at the significant
level of 5%. However, because the calculated Z(n;-
e))/e; value for the lognormal distribution, 27.4 is
smaller than that for the exponential distribution,
29.4, the lognormal distribution is better than the
exponential distribution. Therefore, the lognormal
distribution is used to represent the random
property of discontinuity spacing in the study. The
mean value of foliation spacing is 2.4 m and the
same value is assigned for all three sets.

Discontinuity sirength parameters

Total 6 cores were obtained for the estimation of
shear strength parameters for foliation and tested
by direct shear test. All normal and shear stress
data have been corrected for the elliptical influence of
the shear surface and the shear sample was reset to
its original position at the start of each test.
Samples were subjected to the highest normal
stresses during the first test of the four shear tests
that were run on each sample. The second and
third tests were conducted at lower normal stresses
and the fourth one was run at an intermediate
normal stress. Fig. 5 is one example of direct shear
test plots carried out in this study. For the evaluation
of the residual friction angles, the first test of direct
shear tests was removed in this plot. From the
shear and normal stress plot, cohesion and friction
angle can be obtained for each sample. However,
as Hoek (1997) pointed out, in rock mechanics,
cohesion is a mathematical quantity related to
surface roughness. Therefore, in this study, the
cohesion is considered as zero and the friction
angle is only considered as discontinuity strength
parameter. The friction angles ranged from 23.1°
to 30.8° and the mean value and standard deviation
of these data are respectively 27.03° and 2.94.
However, the number of direct shear test for foliation
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Fig. 5. Plots of direct shear test results.

is too small to carry out statistical inference.
Therefore, the direct shear tests for joints were
used in the determination of appropriate PDF for
discontinuity strength parameter.

Compared to other discontinuity parameters,
limited researches have been accomplished previously
regarding statistical evaluation of discontinuity strength
parameters. However, although limited work has
been accomplished, two different distributions are
suggested for shear strength parameters. Mostyn
and Li (1993) considered ¢ as normally distributed.
However, in the paper by Muratha and Trunk
(1993), a lognormal distribution is adopted for ¢.
They insisted that the lognormal distribution had
an advantage of assuming that the shear strength
will not vield negative values. Therefore, in the
current study, both normal and lognormal distributions
are considered as possible distribution models to
represent random properties of strength parameters
and both distributions are tested for their validity.
According to author's test (Park, 1999), both
distributions appear to be valid models for internal
friction angle, but the normal distribution model is
superior to the lognormal model according to the
test. Table 2 shows the results of Chi-square
goodness-of-fit test for internal friction angle.
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Table 2. Chi-square test results for relative goodness of fit in friction angle.

I Observed Frequency Theoretical Frequency (¢;) (n-e)fe;
nterval
() Normal Lognormal Normal Lognormal
<30.0 0 0.025 0.014 0.025 0.014
30.0-32.5 1 0.152 0.141 4.735 5258
32.5-35.0 0 0.602 0.668 0.602 0.668
35.0-37.5 1 1.550 1.706 0.195 0.292
37.5-40.0 2 2.595 2.609 0.136 0.142
40.0-42.5 3 2.823 2.599 0.011 0.062
42.5-45.0 3 1.997 1.808 0.504 0.787
45.0-47.5 1 0.918 0.928 0.007 0.006
47.5-50.0 (] 0274 0.369 0.274 0.369
>50.0 0 0.053 0.118 0.053 0.118
10.989 10.959 6.543 7715

When the significant level is considered as 5% and
the degrees of freedom equals 7, the Cjygs7 value
determined from Chi-square table equals 14.1.
Both distributions appears to be valid models
because the calculated values are less than 14.1.
However, Z(n;-¢;)%/e; value of normal distribution
is less than X(n-e,)’/e; value of lognormal distribution.
Therefore, in the probabilistic analysis of the
stochastic procedure, the normal distribution is used
for shear strength as a probability density function to
simulate the random characteristics of shear
strength.

PROBABILISTIC ANALYSIS FOR
ROCK WEDGE STABILITY

Monte caro simulation

The Monte Carlo simulation is commonly used
to evaluate the failure probability of a mechanical
system, in particular, when direct integration is not
practical or when the equation to integrate is
difficult to obtain. This simulation is the most
widely used among the probabilistic analysis
methods and many others applied it to evaluate
slope stability (Kulatilake et al., 1985; Muralha
and Trunk. 1993). In this research, the Monte
Carlo method is employed because the deterministic
model for rock wedge failure is not easy to solve
by any other risk analysis methods. The Monte
Carlo simulation approach is to assume that for a
given stability analysis, each variable takes a
single value selected randomly from its measured

distribution, independent of the other variables.
The group of randomly selected parameters is
combined with the fixed input data to generate a
single random value for the factor of safety. This
process is repeated many times to generate a large
number of different factor of safety. The simulation
procedure used in this study is expressed in a
flowchart in Fig. 6. This simulation procedure can
be divided into two steps. The first step is the
kinematic analysis and this analysis is to examine
the kinematic feasibility. That is, based on the
discontinuity orientation data, whether the rock
body defined by discontinuities can move or not
will be checked. The second step is the kinetic
analysis. If the kinematic analysis indicates that the
structural condition is potentially unstable, the
kinetic stability is assessed by the limit equilibrium
method. Therefore, from the two steps in simulation
procedure, we can obtain the probability of
kinematic instability and the probability of kinetic
instability.

Probabilistic assessment

The Monte Carlo simulation performed in the
previous simulation procedure yields a list of
factors of safety for every possible kinematically
unstable rock block. Absolute values of the factor
of safety of less than one indicate that blocks will
fail. However, the definition of the probability of
failure is sometimes quite vague in previous
publications. According to Quek and Leung (1995),
the probability of failure is expressed as
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FIg. 6. Flowchart of probabilistic analysis in the study.
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where Ny is the number of iterations that the
blocks are failed, that is, factors of safety are less
than 1, and Ny is the total number of iterations that
the blocks analyzed. However, as Feng and Lajtai
(1998) pointed out, Ny can be interpreted in two
different ways; Ny is either the total number of
iteration performed or only those iterations that
form kinematically unstable blocks. Depending on
the definitions, the probability of failure will

change.

Therefore, for clear definition, the probability of
failure is defined as the multiplication of the
probability of kinematic instability by the probability
of kinetic instability in this study. This multiplication
is based on the concept of composite models. The
concept of composite models is that all the indi-
vidual components that affect probability of failure
must be compiled to calculate probability of fail-
ure. The probability of kinematic instability (P,,) is
evaluated as the ratio of the number of iterations
(or the number of wedges formed in each iteration)
that are determined as kinematically unstable to
the number of total iterations.

Nm
P “4)

" Np
where N,, is the number of iterations that a block
is kinematically unstable, and Nj is the total
number of iterations.

The probability of kinetic instability is the ratio
of the number of the iterations that the factor of
safety is less than 1 to the number of iterations that
the factor of safety is calculated. However, the
kinetic analysis is performed only when the wedge
is kinematically unstable, the probability of kinetic
instability (P,) is

P=—t (5)

where Ny is the number of iterations that a block
has factor of safety less than one.

Therefore, on the basis of the concept of composite
model, the probability of failure is

N, N;

Pf:PmXPn:N_TXEn (6)

This is possible because the probability of kinetic
instability is a conditional probability based on the
premise that the block is kinematically unstable.
Therefore, based on this probabilistic theory, the
probability of failure is defined as the ratio of the
number of iterations that factor of safety is less
than one, which is based on premise that the
wedge is kinematically unstable, to the number of
total iterations. This method provides a clear
definition based on probability theory and simplifies
the evaluation of factor of safety. In addition, this
concept overcomes the limitation of the previous
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Table 3. Input values for discontinuity properties

. - Set I. D.
Discontinuity Parameters
n 12 13
Mean 155/22 079/60 273/87
Orientation Fisher Constant 72 29 20
PDF Fisher Fisher Fisher
Mean 27.03 27.03 27.03
Friction Angle Standard Deviation 2.94 2.94 2.94
PDF Normal Normal Normal
Mean 24 24 24
Length . . . . . .
PDF Negative Exponential Negative Exponential Negative Exponential
Spaci Mean 24 24 2.4
c
pacing PDF Lognormal Lognormat Lognormal

researches without confusion.
RESULTS OF PROBABILISTIC ANALYSIS

The input parameters, discussed previously and
used in this analysis, are listed in Table 3. The
discontinuity parameters such as orientation, length,
spacing and strength parameters of discontinuity
are mainly accounted for as probabilistic parameters.
On the other hand, the slope geometry parameters
are commonly considered as deterministic parameters.
The height of slope cut analyzed its stability in the
study is approximately 60 m and orientation of the
slope is 140°/45°, and these parameters are con-
sidered in the deterministic way. As mentioned
previously, three major foliation sets were identified
from the field and borehole data and their mean
orientations (155/22 for J1, 079/60 for J2 and 237/
87 for J3) and Fisher constants (72, 29 and 20 for
I1, I2 and I3 respectively) were listed in the table.
In addition, the shear strength and geometries for
each foliation set were also listed in Table 3.
However, due to the limitation of the amount of
data, the same values for each set were assigned
for friction angle, length and spacing of foliation.
Based on input values and the simulation procedure
discussed previously, the computer algorithm was
developed to analyze wedge stability. This computer
algorithm is developed using Microsoft Excel and
its built-in Visual Basic (VBA) programming
environment because those have several advantages.
One advantage is that the Monte Carlo simulation
can be implemented easily using spreadsheet and
its built-in Visual Basic programming environment.

This is because most spreadsheets have their built-
in random number generator and this makes the
complicated and repeated procedure in Monte
Carlo simulation easy. Another advantage is its
statistical function. Because a spreadsheet has
built-in basic statistical functions, such as normal,
lognormal and exponential distribution, we can
use these functions easily without considering the
PDF of each distribution function which is not
easy to formulate. Consequently, using input values
and the computer algorithm, the probabilistic
analyses were carried out and the results of the
analysis for wedge failure are listed in Table 4. In
this simulation procedure, approximately 20,000
cycles of Monte Carlo simulation is performed.
Then, in order to compare the probability of slope
failure with the deterministic analysis results, the
factors of safety for each wedge generated
randomly were evaluated and then also listed in
Table 4.

According to the deterministic analysis results in
Table 4, no discontinuity combinations indicate the
unstable condition. In other words, the deterministic
analysis, evaluated using single representative values
for discontinuity parameters indicates a stable con-
dition for wedge failures in all discontinuity com-
binations. However, on the basis of probabilistic
analysis results in Table 4, the probabilities of
kinematic instability for J1 & J2, J1 & J3 and J2
& J3 combinations are 21.5%, 11.7% and 0.9%,
respectively. Therefore, there are the possibilities of
kinematic instability for all combinations of discon-
tinuity sets on the probabilistic analysis. That is,
especially in case for J1 & J2 combination, the



Probabilistic Approach of Stability Analysis for Rock Wedge Failure 305

Table 4. Results of wedge failure for deterministic analysis and probabilistic analysis.

Probability of Failure Total Probability

Set No. 1 Set No. 2 Factor of Safety .
Kinematic Kinetic of Failure
8l 12 Stable 0215 0.183 0.039
J1 I3 Stable 0.117 0.641 0.075
2 13 Stable 0.009 0.583 0.005

intersection line of the combination evaluated by
each single representative orientation for two
discontinuity sets is located in a stable area of
stereograph. However, if we consider the scattering
of orientations, 21.5% of intersection lines, formed
from two randomly picked discontinuity orientations
in two discontinuity sets, are indicated as unstable
kinematically. The probability of kinetic instability
are 18.3%, 64.1% and 58.3% for J1 & J2, J1 & J3,
and J2 & J3, respectively, and therefore, these
combinations have quite high probabilities of
kinetic instability. The total probabilities of wedge
failure for each combination evaluated by the
multiplication of the two previous probabilities are
39%, 7.5% and 0.5%, respectively. Therefore,
there is a big difference between the results of the
deterministic analysis and the probabilistic analysis
for J1 & J3 combination especially because the
deterministic analysis indicates as stable but the
probabilistic analysis shows 7.5% probability of
failure. Based on the 1% of the acceptable failure
probability for rock slope suggested by Priest and
Brown (1982), J1 & J3 combination is interpreted
as unstable in a probabilistic analysis but it is
analyzed as stable in the deterministic analysis.
This results of the probabilistic analysis coincides
with Golder associates report in this area (Roberds
and Wyllie, 19996). According to the report, the
possibility that the foliation may form narrow
wedges in this area is observed in the field.
Consequently, the deterministic analysis based on a
fixed representative value of discontinuity parameters
fails to indicate the possibility of failure. This is
because the deterministic analysis can not consider
the scatter of discontinuity parameters. That is,
even though the representative value of discontinuity
parameters does not indicate unstable condition,
many other scattered data could show the instability
and the slope can be in an unstable condition.
Therefore, it can be said that there is a possibility
that the deterministic analysis based on the single

representative value of discontinuity parameters
can lead to misinterpretation of rock slope
stability.

CONCLUSIONS

The result of comparison between deterministic
analysis and probabilistic analysis in the study area
indicates that the analysis result of probabilistic
analysis could be quite different from that of the
deterministic analysis. The deterministic analysis
based on a single value of discontinuity parameters
fails to indicate the possibility of slope failure.
Consequently, the deterministic analysis is unable
to represent the actual condition of rock slope
because this analysis does not consider random
properties of parameters and therefore, this misinter-
pretation can cause serious problems. By contrast,
the probabilistic analysis is more representative of
the actual behavior of parameters and provides
analysis results. Therefore, it is recommended that
the probabilistic analysis should be used especially
in cases when significant scatter in the parameters
is observed. In addition, the stochastic properties
of discontinuity parameters were discussed in this
study. The appropriate probability density functions
for each parameter were proposed on the basis of
goodness-of-fit test for field data and theoretical
reasons. These properties were used in this
study and also could be utilized in future studies.
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