• Title/Summary/Keyword: Scantling

Search Result 68, Processing Time 0.031 seconds

Consideration for IMO Type C Independent Tank Rule Scantling Process and Evaluation Methods (IMO C형 독립탱크의 설계치수 계산과정 및 평가방법에 대한 고찰)

  • Heo, Kwang-hyun;Kang, Won-sik;Park, Bong-qyun
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.93-104
    • /
    • 2017
  • IMO type C independent tank is one of the cargo containment system specified on IGC code. It is normally adopted for small and medium size liquefied gas carrier's cargo containment system and it can be applied to fuel tank of LNG fueled vessel. This study focuses on rule scantling process and evaluation methods in early design stage of type C independent tank. Actual design results of 22K LPG/Ammonia/VCM carrier's No.2 cargo tank are demonstrated. This paper presents the calculation methods of design acceleration and liquid height for internal design pressure as defined on IGC code. And this paper shows the applied results of classification rules about shell thickness requirement and buckling strength. Additionally this paper deals with evaluation methods of structural strength and cumulative fatigue damage using FE analysis.

  • PDF

On The Development of Design Wave Loads in Classification Rules(I) (선급 강선규칙의 설계 파랑하중 산식 개발(I))

  • J.Y. Song;Y.K. Chon;T.B. Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.112-126
    • /
    • 1993
  • In this paper, unified requirements of IACS on longitudinal strength of ships are investigated using nonlinear wave loads analyses under short term irregular waves. Also, analyses on IACS wave data were carried out for the purpose of presenting the guideline for future use. While keeping theoretical consistensy, the rule requirements for horizontal shear force, bending moment and torsional moment are newly proposed for the ships of large deck openings bases on the calculation results for 17 sample ships. The requirements for side shell hydrodynamic pressure are also presented. All the calculated results are compared with other Societies and present KR rules. These formula will be checked when corresponding requirements of structural scantling are determined.

  • PDF

11m급 동력 낚시보트의 최적 설계 조건 도출에 관한 연구

  • Ok, Ji-Hun;Jeong, Jae-Hun;Lee, Seung-Geon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.92-94
    • /
    • 2014
  • 본 논문에서는 11m급 동력 낚시보트의 최적 설계 조건을 도출하였으며, 이를 위하여 CG 추정(Weight study), 스캔틀링(Scantling), 동력 계산(Power calculation) 등을 통해 현실성이 있는 시뮬레이션을 실시하였다. 그리고 도출된 선형을 바탕으로 3종류의 chine 폭과 Deadrise angle의 변화에 따른 Trim angle과 복원성을 평가하였다. 본 연구 결과를 통해 실제 보트 설계 시 최적 설계 조건으로서 현실성 있게 반영될 수 있을 것으로 기대된다.

  • PDF

On the Design Impact Pressure in the Rules and Regulations of ISO and Classification Societies (선급 및 ISO에 나타난 설계충격 하중에 관하여)

  • Lee, June
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.31
    • /
    • pp.60-70
    • /
    • 2011
  • The slamming impact pressures at the bottom area of the Open60' are evaluated by the rules and regulations of various organizations - ISO and classification societies. The enhanced performance of the modern racing yacht in terms of speed which achieves well over 20 knots needs special consideration. The calculated design impact pressures are compared a experimental results. Severe difference can be found in these calculation results but the final conclusion shall be obtained after the scantling calculation under the evaluated design impact pressure so far.

  • PDF

Comparative Study of Rules of ISO 12215 and International Classification Society for Structural Design of CFRP Cruise Boat (탄소섬유강화복합재료(CFRP) 레저선박 선체설계를 위한 ISO 12215와 국제선급규정 비교분석)

  • Oh, Dae-Kyun;Lee, Dong-Kun;Kang, Gi-Moon;Ryu, Cheol-Ho;Noh, Jackyou
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.77-84
    • /
    • 2014
  • Recently, CFRP composites have often been used as the materials for lightweight pleasure yacht hulls. Because CFRP composites not only make the hull light but also have good physical characteristics, in the leading countries of the marine industries, CFRP yachts are being sold at a higher price. The design and construction of FRP composite yachts, including those made of CFRP, have to follow rules based on ISO 12215, such as the hull structure rules of the international classification societies. On the other hand, there are no rules related to CFRP composites in the Guidance for Recreational Crafts, which was newly revised by the Korean Register of Shipping. In this paper, ISO 12215-5 and Part B, RINA Pleasure Yacht (REGISTRO ITALIANO NAVALE) on the design pressure and scantling of CFRP hull structures are compared and analyzed. Through a comparative study and the application to a cruise yacht design, we try to understand how to design CFRP hull structures using the international standards, ISO 12215, and the rules of the international classification society, RINA.

The Fundamental Study on the Development of Leisure Boat's Drop Test Management System based on ISO 12215-5 (ISO 12215-5에 기반 한 레저선박 낙하시험 평가시스템 개발을 위한 기초연구)

  • Kang, Nam-Seon;Park, Chung-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.4
    • /
    • pp.365-370
    • /
    • 2012
  • International Organization for Standardization has recently published ISO 12215-5 which is the small craft-hull construction and scantling. According to ISO 12215-5 AnnexB, the scantling determination can be accomplished by drop test for craft with a length $L_H$ of 2.5m up to 6m and single-skin construction. The current method, however, of visual test has the issue where it is difficult to make an objective evaluation of ship body strength. In this study, in order to develop an evaluation system that can make a quantitative evaluation of the drop test of leisure boats, the domestic/foreign regulations on drop test of leisure boats are analyzed and the drop test evaluation system is designed, and the system applicability is reviewed through 5-meter level aluminum ship, and the issues incurred by the state of the ship and the posture while dropping were checked.

Comparison of Buckling Check Formulas and Optimal Design (보강판의 좌굴 평가식에 따른 좌굴 강도 및 최적설계의 비교)

  • Jang, Beom-Seon;Cho, Ho-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.71-78
    • /
    • 2009
  • In ship design or offshore structure design, the evaluation of buckling strength (or ultimate strength) is critical to the determination of scantling of stiffened plates. For this reason, it is useful to study the effect of applying different formula or the relationship between stiffened plate with buckling utilization factor (UF). It can facilitate a designer to decide how much the scantling should be reinforced or how much can be reduced for an optimal design. This paper conducts a comparative study for three buckling check methods; DNV-Ship-Rule, DNV-RP-C201, DNV-PULS. The capacity curves and 2D contour plot for utilization factors versus bi-axial in-plane stresses are compared. The contour plots of DNV-Ship-Rule and DNV-PULS show smoothly increasing trends of UF as the applied in-plane stresses increase, however that of DNV-RP-C201 shows rapidly increasing trend as the applied stresses go beyond transverse buckling stress. A sensitivity analysis is performed to investigate the influence level of each parameter of a stiffened plate on UF. Resulting from the analysis, plate thickness is identified to be the most affective parameter to UF regardless of the buckling check methods. Based on the addressed study, optimal designs for bottom plate of 165 K tanker corresponding to three formulas are compared with each other. DNV-PULS yields 1 mm and 2 mm less thickness than DNV-Ship-Rule and DNV-RP-C201, respectively.

Development of 3D CAD/CAE Interface in Initial Structural Design Phase of Shipbuilding (조선 기본구조설계 단계에서의 3D CAD/CAE 인터페이스 개발)

  • Son, Myeong-Jo;Lee, Jeong-Youl;Park, Ho Gyun;Kim, Jong-Oh;Woo, Jengjae;Lee, JoungHyun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.2
    • /
    • pp.186-195
    • /
    • 2016
  • The finite element modeling of a ship for hull structural analysis on the basis of new harmonized common structural rules (CSR-H) is to be extended to the cargo holds in fore and after body of a ship. Unlike the parallel middle-body where the external and internal features of hull are equal along to the longitudinal direction of a ship, in fore and after body, the external and internal features of hull vary linearly or even irregularly in forms of a surface or a curve along to the longitudinal direction of a ship. Thus, it needs lots of design man-hours for the modeling for structural analysis. In order to save man-hours in initial structural design phase of a ship, the specified 3D CAD system has been adopted in shipbuilding industry. Through the interface between CAD and CAE (rule scantling and direct strength assessment), design man-hour in initial design phase can be saved even under the environment of CSR-H.

The optimum design for 75.5k DWT bulk carrier using the multi-object modified artificial life algorithm by CSR rule (CSR규정에 따른 수정 인공생명 알고리즘을 이용한 75.5k DWT 산적화물선의 최적설계)

  • Bae, Dong-Myung;Kim, Hag-Soo;Zakki, Ahmad Fauzan
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.2
    • /
    • pp.155-164
    • /
    • 2012
  • The CSR rule was defined by IACS as the unified rule for a commercial ship like a bulk carrier and a tanker. It have been required more strict conditions for various parts like loading conditions, the local and girder strength, fatigue strength, FEM for the ship rule. It was changed in many parts of the ship rules. In this paper, the mid-parts of 17.5K DWT bulk carrier were optimized by the CSR rule. On the other hand, the modified artificial life algorithms with multi-object functions were developed for optimizing the scantling. It is possible to find multi-global optimum solutions in the multi-object functions. And it is faster and efficient than the artificial life algorithm. First, to be optimizing the scantling and the weight by CSR rule, that is calculated by the CSR rule. The next, the result is re-calculated by the modified artificial life algorithm with multi-object functions. The optimized results which are satisfied with the CSR rule like the minimum size and the thickness of stiffener and the minimum cost have been searched by the optimizing algorithm. And the results have been compared with the non-optimizing results.