• Title/Summary/Keyword: Scanning stage

Search Result 447, Processing Time 0.035 seconds

A Study on the Relationship between Environmental Scanning of Fashion Merchandisers and Characteristics of Information Sources (패션머천다이저 환경탐색 형태와 정보매체 특성과의 관계에 관한 연구)

  • Kim, Sung-Kun;Im, Nam-Young
    • Journal of Information Technology Applications and Management
    • /
    • v.15 no.4
    • /
    • pp.137-157
    • /
    • 2008
  • Fashion merchandiser profession is a highly information-intensive job. In fact, a merchandiser is to acquire a variety of information mainly from external environment and to analyze it in order to come to an informed decision. Despite a significant amount of past studies on environment scanning, their main concern was of managerial work. And, some fashion design studies have only touched the issue of information source in a descriptive tone. Here, we attempt to analyze empirically fashion merchandisers' environmental scanning activities. Our results can be stated as follows : 1) Though the quality of information source has a positive relationship with its use, the accessibility does not. 2) There is no significant difference between the use of relational source and the use of non-relational source. 3) Internet is being used more at the initial stage(opening) of information seeking than at the orientation and consolidation stage.

  • PDF

A study of the design and control system for the ultra-precision stage (초정밀 스테이지 설계 및 제어 시스템에 관한 연구)

  • Park Jongsung;Jeong Kyuwon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.54-59
    • /
    • 2005
  • Recently, the ultra-precision stage is widely used in the fields of the nano-technology, specially in AFMs(Atomic Force Microscope) and STMs(Scanning Tunneling Microscope). In this paper, the ultra-precision stage which consists of flexure hinges, piezoelectric actuator, and ultra-precision linear encoder, is designed and developed. The guide mechanism which consisted of flexure hinges is analyzed by Finite Element Method. And we derived the transfer function of the system in 1st order system from step responses according to the magnitude. We performed simulation for the model to tune the control gain and applied the gains to the developed system. Experimental results found that the stage can be controlled in 5 nm resolution by PID controller.

  • PDF

Improved Lateral Resolution of Interferometric Microscope Using Precision Scanner (정밀 스캐너를 이용한 간섭 현미경의 가로방향 분해능 향상)

  • 박성림;박도민;류재욱;권대갑
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.116-123
    • /
    • 1998
  • An interferometric microscope with an improved lateral resolution is presented. The nanometer resolution XY stage is integrated into standard temporal phase shifting interferometer. The nanometer resolution XY stage is used to position specimen in subpixel of CCD detector, therefore CCD detector's sampling is improved. Two scanning algorithms and those simulation results are also presented. The simulation results show that scanning algorithms improve CCD detector's sampling significantly, and interferometeric microscope's lateral resolution is improved also.

  • PDF

The Development of Confocal Microscopy Using the Amplified Double-compound Flexure Guide (레버 증폭 구조의 플렉서를 이용한 공초점 현미경의 개발)

  • Lee, Sang-Won;Kim, Wi-Han;Jung, Young-Dae;Park, Min-Kyu;Kim, Jee-Hyun;Lee, Sang-In;Lee, Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.1
    • /
    • pp.46-52
    • /
    • 2011
  • A confocal microscope was developed utilizing a scanning sample stage based on a home-built double-compound flexure guide. A scanning sample stage with nano-scale resolution consisted of a double leaf spring based flexure, a displacement amplifying lever, a Piezo-electric Transducer(PZT) actuator and capacitance sensors. The performance of the two-axis stage was analyzed using a commercial finite element method program prior to the implementation. A single line laser was employed as the light source along with the Photo Multiplier Tube(PMT) that served as the detector. The performance of the developed confocal microscope was evaluated with a mouse ear skin imaging test. The designed scanning stage enabled us to build the confocal microscope without the two optical scanning mirror modules that are essential in the conventional laser scanning confocal microscope. The elimination of the scanning mirror modules makes the optical design of the confocal microscope simpler and more compact than the conventional system.

7Li-NMR and Thermal Analysis for Lithium Inserted into Artificial Carbon Material

  • O, Won Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.4
    • /
    • pp.367-371
    • /
    • 2001
  • Lithium inserted into artificial carbon has been synthesized as a function of the Li concentration. The characteristics of these prepared compounds were determined from the studies using X-ray diffraction(XRD), solid nuclear magnetic resonance (NM R) spectrophotometric and differential scanning calorimeter(DSC) analysis. X-ray diffraction showed that lower stage intercalation compounds were formed with increasing Li concentration. In the case of the AG3, most compounds formed were of the stage 1 structure. Pure stage 1 structural defects of artificial graphite were not observed. 7Li-NMR data showed that bands are shifted toward higher frequencies with increasing lithium concentration; this is because non-occupied electron shells of Li increased in charge carrier density. Line widths of the Li inserted carbon compounds decreased slowly because of nonhomogeneous local magnetic order and the random electron spin direction for located Li between graphene layers. The enthalpy and entropy changes of the compounds can be obtained from the differential scanning calorimetric analysis results. From these results, it was found that exothermic and endothermic reactions of lithium inserted into artificial carbon are related to the thermal stability of lithium between artificial carbon graphene layers.

Hot stage microscopy and its applications in pharmaceutical characterization

  • Arun Kumar;Pritam Singh;Arun Nanda
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.12.1-12.11
    • /
    • 2020
  • Hot stage microscopy (HSM) is a thermal analysis technique that combines the best properties of thermal analysis and microscopy. HSM is rapidly gaining interest in pharmaceuticals as well as in other fields as a regular characterization technique. In pharmaceuticals HSM is used to support differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA) observations and to detect small changes in the sample that may be missed by DSC and TGA during a thermal experiment. Study of various physical and chemical properties such sample morphology, crystalline nature, polymorphism, desolvation, miscibility, melting, solid state transitions and incompatibility between various pharmaceutical compounds can be carried out using HSM. HSM is also widely used to screen cocrystals, excipients and polymers for solid dispersions. With the advancements in research methodologies, it is now possible to use HSM in conjunction with other characterization techniques such as Fourier transform infrared spectroscopy (FTIR), DSC, Raman spectroscopy, scanning electron microscopy (SEM) which may have additional benefits over traditional characterization techniques for rapid and comprehensive solid state characterization.

First observation on the early embryonic and larval development of spiny oyster Saccostrea kegaki Torigoe & Inaba, 1981 (Bivalvial: Ostreoida) using scanning electron microscope on the north coast of Jeju, Korea (주사전자현미경 (Scanning Electron Microscope)을 이용한 제주 북부 연안에 서식하는 가시굴 (Saccostrea kegaki Torigoe & Inaba, 1981)의 초기 유생발달관찰)

  • Lee, Hee-Jung;Kang, Hyun-Sil;Jeung, Hee-Do;Hong, Hyun-Ki;Choi, Kwang-Sik.
    • The Korean Journal of Malacology
    • /
    • v.29 no.2
    • /
    • pp.97-103
    • /
    • 2013
  • In the present study, we monitored the early development of Saccostrea kegakia subtropical oyster species distributing on rocky intertidal off the northern Jeju Island using scanning electron microscope (SEM). The female oyster collected in early August, 2012 were fully mature exhibiting relatively small eggs ($46.5{\pm}1.4{\mu}m$ in diameter) in the gonad, while testis of the mature male oysters were filled with fully developed sperms of 36.9 ${\mu}m$ in length. The fertilized eggs developed into 2-cell stage with polar body after 1 hr 20 min of fertilization, then followed by Morula stage (3 hr 20 min), Blastula stage (4 hr 50 min), Gastrula stage (7 hr), and trochophore larvae stage (9 hr 30 min). The observed early development of S. kegaki in this study was similar the early development of other oysters, although size of the fertilized eggs were somewhat smaller.

An XY scanner with minimized coupling motions for the high speed AFM (상호 간섭이 최소화된 고속 원자현미경용 XY 스캐너 제작)

  • Park J.;Moon W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.653-656
    • /
    • 2005
  • This paper introduces design, fabrication and experiment process of a novel scanner for the high speed AFM(Atomic Force Microscope). A proper design modification is proposed through analyses on the dynamic characteristics of the existing linear motion stages using a dynamic analysis program, Recurdyn. Since the scanning speed of each direction is allowed to be different, the linear motion stage for the high-speed scanner of AFM can be so designed to have different resonance frequencies for the modes with one dominant displacement in the desired directions. One way to achieve this objective is to use one-direction flexure mechanism for each direction and to mount one stage for fast motion on the other stage for slow motion. This unsymmetrical configuration separates the frequencies of the two vibration modes with one dominant displacement in each desired direction, hence, the coupling between the motions in the two directions. In addition, a pair of actuators is used for each axis to decrease the cross talks in the two motions and gives a force large enough to actuate the slow motion stage, which carries the fast motion stage. After these design modifications, a novel scanner with scanning speed higher than 10 Hz can be achieved to realize undistorted images in the high speed AFM.

  • PDF

Development of Large-area Two-photon Stereolithography Process for the Fabrication of Large Three-dimensional Microstructures (대면적 3 차원 마이크로 형상제작을 위한 스테이지 스캐닝 시스템을 이용한 이광자 흡수 광조형 공정 개발)

  • Lim, Tae-Woo;Son, Yong;Yi, Shin-Wook;Kong, Hong-Jin;Park, Sang-Hu;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.122-129
    • /
    • 2008
  • Two-photon stereolithography is recognized as a promising process for the fabrication of three-dimensional (3D) microstructures with 100 nm resolution. Generally, beam-scanning system has been used in the conventional process of two-photon stereolithography, which is limited to the fabrication of micro-prototypes in small area of several tens micrometers. For the applications to 3D high-functional micro-devices, the fabrication area of the process is required to be enlarged. In this paper, large-area two-photon stereolithography (L-TPS) employing stage scanning system has been developed. Continuous scanning method is suggested to improve the fabrication speed and parameter study is conducted. An objective lens of high numerical aperture (N.A.) and high strength material were employed in this system. Through this work, 3D microstructures of $600*600*100\;{\mu}m$ were fabricated.

A Study on the Development of DevSecOps through the Combination of Open Source Vulnerability Scanning Tools and the Design of Security Metrics (오픈소스 취약점 점검 도구 및 종합 보안 메트릭 설계를 통한 DevSecOps 구축방안 연구)

  • Yeonghae Choi;Hyeongjun Noh;Seongyun Cho;Hanseong Kang;Dongwan Kim;Suhyun Park;Minjae Cho;Juhyung Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.4
    • /
    • pp.699-707
    • /
    • 2023
  • DevSecOps is a concept that adds security procedures to the operational procedures of DevOps to respond to the short development and operation cycle. Multi-step vulnerability scanning process should be considered to provide reliable security while supporting rapid development and deployment cycle in DevSecOps. Many open-source vulnerability scanning tools available can be used for each stage of scanning, but there are difficulties in evaluating the security level and identifying the importance of information in integrated operation due to the various functions supported by the tools and different security results. This paper proposes an integrated security metric design plan for scurity results and the combination of open-source scanning tools that can be used in security stage when building the open-source based DevSecOps system.