• Title/Summary/Keyword: Scanning probe

Search Result 588, Processing Time 0.037 seconds

Precision-structural Design for Scanning Probe Microscopes (주사탐침현미경을 위한 정밀 구조 설계)

  • Lee, Moo-Yeon;Shim, Jae-Sool;Lee, Dong-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4095-4099
    • /
    • 2010
  • Nano-measurement systems such as scanning probe microscopes should be protected against external disturbances. For the design of a scanning probe microscope, the external vibrations need to be characterized and the vibrational properties of the structural frame itself should be modeled. Also, the influences of the external vibration on the apparatus need to be known for its utmost precision. In this paper, the combined vibrational-characteristics of the floor and the structural frame are analyzed and experimentally investigated.

Analysis of the Local Properties in GdBCO and YBCO Coated Conductors using Low-temperature Scanning Laser and Hall Probe Microscopy (저온 주사 레이저 및 홀소자 현미경을 이용한 GdBCO와 YBCO 초전도 선재의 국소적 특성 분석)

  • Park, S.K.;Ri, H.C.
    • Progress in Superconductivity
    • /
    • v.13 no.3
    • /
    • pp.169-177
    • /
    • 2012
  • Distribution of the local properties in GdBCO and YBCO coated conductors was investigated using Low-temperature Scanning Laser and Hall Probe Microscopy (LTSLHPM). We prepared GdBCO and YBCO coated conductors to study the spatial distribution of the current density in a single bridge. Inhomogeneity of the ${T_c}^{max}$ in the bridge was analyzed from experimental results of Scanning Laser Microscopy (SLM) near the superconducting transition. The local transport and screening current in the bridge were also investigated using Scanning Hall Probe Microscopy (SHPM). A series of line scans of SLM of the GdBCO and YBCO sample showed that lines with more inhomogeneous distributions of ${\delta}V$ had more inhomogeneous distributions of ${T_c}^{max}$. The defect of the superconducting layer of the GdBCO sample caused by damage to the substrate affected the current flow. And we could analyze the redistribution of the current density using SLM and SHPM.

Digitization of Unknown Sculptured Surface Using a Scanning Probe (스캐닝 프로브를 이용한 미지의 자유곡면 점군 획득에 관한 연구)

  • 권기복;김재현;이정근;박정환;고태조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.57-63
    • /
    • 2004
  • This paper describes a method for digitizing the compound surfaces which are comprised of several unknown feature shapes such as base surface, and draft wall. From the reverse engineering's point of view, the main step is to digitize or gather three-dimensional points on an object rapidly and precisely. As well known, the non-contact digitizing apparatus using a laser or structured light can rapidly obtain a great bulk of digitized points, while the touch or scanning probe gives higher accuracy by directly contacting its stylus onto the part surface. By combining those two methods, unknown features can be digitized efficiently. The paper proposes a digitizing methodology using the approximated surface model obtained from laser-scanned data, followed by the use of a scanning probe. Each surface boundary curve and the confining area is investigated to select the most suitable digitizing path topology, which is similar to generating NC tool-paths. The methodology was tested with a simple physical model whose shape is comprised of a base surface, draft walls and cavity volumes.

Vibration Characteristics and Performance of Cantilever for Non-contact Atomic Force Microscopy (비접촉 원자간력 현미경의 탐침 캔틸레버 진동 특성 및 측정 성능 평가)

  • 박준기;권현규;홍성욱
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.6
    • /
    • pp.495-502
    • /
    • 2004
  • This paper presents the vibration analysis and the performance evaluation of cantilevers with probing tips for non-contact scanning probe microscopy. One of the current issues of the scanning probe microscopy technology is to increase the measurement speed, which is closely tied with the dynamic characteristics of cantilevers. The primary concern in this research is to investigate the relation between the maximum possible speed of non-contact scanning probe microscopy and the dynamic characteristics of cantilevers. First, the finite element analysis is made for the vibration characteristics of various cantilevers in use. The computed natural frequencies of the cantilevers are in good agreement with measured ones. Then, each cantilever is tested with topographic measurement for a standard sample with the scanning speed changed. The performances of cantilevers are analyzed along with the natural frequencies of cantilevers. Experiments are also performed to test the effects of how to attach cantilevers in the piezo-electric actuator. Finally, measurement sensitivity has been analyzed to enhance the performance of scanning probe microscopy.

Performance Evaluation of Non-contact Atomic Force Microscopy Due to Vibration Characteristics of Cantilever (비접촉 원자간력 현미경의 탐침 외팔보 진동특성에 따른 성능 평가)

  • 박준기;권현규;홍성욱
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.263-268
    • /
    • 2003
  • This paper presents a result of performance evaluation fur non-contact scanning probe microscopy with respect to the vibration characteristics of cantilevers with tips. One of the current issues of the scanning probe microscopy technology is to increase the measurement speed, which is closely tied with the dynamic characteristics of cantilevers. The primary concern in this research is to investigate the relation between the maximum possible speed of non-contact scanning probe microscopy and the dynamic characteristics of cantilevers. First, the finite element analysis is made fur the vibration characteristics of various cantilevers in use. The computed natural frequencies of the cantilevers are in good agreement with measured ones. Then, each cantilever is tested with topographic measurement for a standard sample with the scanning speed changed. The performances of cantilevers are analyzed along with the natural frequencies of cantilevers. Experiments are also performed to test the effects of how to attach cantilevers in the piezo-electric actuator. Finally, measurement sensitivity has been analyzed to enhance the performance of scanning probe microscopy.

  • PDF

Controller Design for Decoupling of Scanning probe Data Storage System (두 축간 Coupling 을 고려한 Scanning probe Data Storage 시스템 제어기 설계)

  • Moon, Jun;Yun, Jae-Sang;Jeong, Ji-Young;Lee, Choong-Woo;Chung, Chung-Choo;Kim, Young-Sik
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.2
    • /
    • pp.73-80
    • /
    • 2007
  • Atomic Force Microscopy (AFM)방식을 이용한 Scanning probe Data Storage (SDS) 시스템은 array cantilever 를 이용하여 나노 단위로 데이터 읽기, 쓰기를 하는 시스템이다. 따라서 미디어가 있는 stage 의 x 축과 y 축 및 두 축간 coupling 을 고려한 제어기 설계가 요구된다. 본 논문은 SDS 시스템의 축간 coupling 을 고려하지 않은 기존의 제안된 LQG 에 PI 를 추가한 제어기 구조를 사용한다. 두 축간 coupling 공진의 영향을 최소화 하기 위해 convex optimization 으로 설계된 최적의 position profile를 기준 입력신호로 사용한다. 제안된 제어기를 SDS 시스템에 적용하여 모의실험을 하고 그 결과 position profile 로 인해 각 축간 coupling 공진 영향이 감소하여 tracking performance 가 기존의 LQG 제어기 보다 향상된 것을 확인한다.

  • PDF

A Scanning Flow Impedance Micrscope (유체역학 현상을 이용한 현미경 검사법 개발)

  • Kim, Tae-Young;Kim, Dong-Kwon;Kim, Sung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2670-2675
    • /
    • 2008
  • We introduce a new type of surface microscope using hydrodynamic phenomena. The fluid flow through the opening of the pipette probe is blocked at short distances between the probe and the surface, thus increasing the pressure loss. Therefore, a scanning flow impedance microscope (SFIM) can image the surface topology by scanning the probe with measuring the pressure loss. The SFIM can display the topology regardless of surface hardness, surface electrical conductivity, and surrounding fluid. The present letter contains the first experimental results on surface topography obtained with this novel microscope. The preliminary results in air demonstrate the lateral resolution of the SFIM is very close to the inner diameter of the probe.

  • PDF