• 제목/요약/키워드: Scanning Electrochemical Microscopy (SECM)

검색결과 9건 처리시간 0.024초

Applications of Scanning Electrochemical Microscopy (SECM) Coupled to Atomic Force Microscopy with Sub-Micrometer Spatial Resolution to the Development and Discovery of Electrocatalysts

  • Park, Hyun S.;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권4호
    • /
    • pp.316-326
    • /
    • 2016
  • Development and discovery of efficient, cost-effective, and robust electrocatalysts are imperative for practical and widespread implementation of water electrolysis and fuel cell techniques in the anticipated hydrogen economy. The electrochemical reactions involved in water electrolysis, i.e., hydrogen and oxygen evolution reactions, are complex inner-sphere reactions with slow multi-electron transfer kinetics. To develop active electrocatalysts for water electrolysis, the physicochemical properties of the electrode surfaces in electrolyte solutions should be investigated and understood in detail. When electrocatalysis is conducted using nanoparticles with large surface areas and active surface states, analytical techniques with sub-nanometer resolution are required, along with material development. Scanning electrochemical microscopy (SECM) is an electrochemical technique for studying the surface reactions and properties of various types of electrodes using a very small tip electrode. Recently, the morphological and chemical characteristics of single nanoparticles and bio-enzymes for catalytic reactions were studied with nanometer resolution by combining SECM with atomic force microscopy (AFM). Herein, SECM techniques are briefly reviewed, including the AFM-SECM technique, to facilitate further development and discovery of highly active, cost-effective, and robust electrode materials for efficient electrolysis and photolysis.

Applications of Scanning Electrochemical Microscopy

  • Bard, Allen J.;Fan, Fu-Ren F.
    • 분석과학
    • /
    • 제8권4호
    • /
    • pp.1069-1074
    • /
    • 1995
  • The application of scanning electrochemical microscopy to the imaging of surfaces in water and air and to the study of the electrochemistry of single molecules is discussed.

  • PDF

Frequency-Distance Responses in SECM-EQCM: A Novel Method for Calibration of the Tip-Sample Distance$\S$

  • 신명선;전일철
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권11호
    • /
    • pp.1227-1232
    • /
    • 1998
  • The frequency response on the tip-sample distance in scanning electrochemical microscopy (SECM) that is combined with an electrochemical quartz crystal microbalance (EQCM) is described. The oscillation frequency of the EQCM increases rapidly when the SECM tip is very close to the substrate electrode surface. This frequency increase is reproducible regardless of the current feedback in SECM, which is attributed to the stress caused by the tip pressing the quartz crystal. It is useful to calibrate the tip-sample distance with respect to the frequency change when a combined system of SECM and EQCM (SECM-EQCM) is used. This method could be applied to several cases such as rigid metal electrode and non-conducting or partially conducting polymer coating prepared on the quartz crystal regardless of the feedback current.

Use of Local Electrochemical Methods (SECM, EC-STM) and AFM to Differentiate Microstructural Effects (EBSD) on Very Pure Copper

  • Martinez-Lombardia, Esther;Lapeire, Linsey;Maurice, Vincent;De Graeve, Iris;Klein, Lorena;Marcus, Philippe;Verbeken, Kim;Kestens, Leo;Gonzalez-Garcia, Yaiza;Mol, Arjan;Terryn, Herman
    • Corrosion Science and Technology
    • /
    • 제16권1호
    • /
    • pp.1-7
    • /
    • 2017
  • When aiming for an increased and more sustainable use of metals a thorough knowledge of the corrosion phenomenon as function of the local metal microstructure is of crucial importance. In this work, we summarize the information presented in our previous publications[1-3] and present an overview of the different local (electrochemical) techniques that have been proven to be effective in studying the relation between different microstructural variables and their different electrochemical behavior. Atomic force microscopy (AFM)[1], scanning electrochemical microscopy (SECM)[2], and electrochemical scanning tunneling microscopy (EC-STM)[3] were used in combination with electron backscatter diffraction (EBSD). Consequently, correlations could be identified between the grain orientation and grain boundary characteristics, on the one hand, and the electrochemical behavior on the other hand. The grain orientation itself has an influence on the corrosion, and the orientation of the neighboring grains also seems to play a decisive role in the dissolution rate. With respect to intergranular corrosion, only coherent twin boundaries seem to be resistant.

Scanning Ion Conductivity Microscopy의 Approach Curve에 대한 측정 및 계산을 통한 Current Squeezing 효과의 고찰 (An Investigation of the Current Squeezing Effect through Measurement and Calculation of the Approach Curve in Scanning Ion Conductivity Microscopy)

  • 김영서;조영준;신한균;박현;김정한;이효종
    • 마이크로전자및패키징학회지
    • /
    • 제31권2호
    • /
    • pp.54-62
    • /
    • 2024
  • SICM (scanning ion conductivity microscopy)은 nanopipette이 시료에 접근하게 되면서 tip에 인가되는 전류값의 변화가 발생하는데, 이를 이용하여 시료의 표면 형상을 측정하는 분석기술이다. 본 연구는 SICM mapping의 기본이 되는 tip과 시료 간의 거리에 의한 전류 반응곡선인 approach curve에 대해 연구한 결과를 담고 있다. Approach curve에 대해 우선 시뮬레이션 해석을 진행하였으며, 이를 기반으로 실험을 병행하여 이 둘 사이의 반응 곡선 차이를 분석하였다. 시뮬레이션 해석을 통해 tip과 시료와의 거리가 tip 내경의 절반 이하로 가까워지면서 current squeezing 효과를 확인할 수 있었다. 하지만, 시뮬레이션에 반영된 단순 이온 통로 감소에 의한 전류밀도 감소는 실제 실험을 통해 측정된 current squeezing 효과에 비해 훨씬 작은 것으로 측정되었다. 이는 나노 스케일의 매우 좁은 통로에서 이온전도도는 확산계수에 의한 단순 Nernst-Einstein 관계를 따르는 것이 아니라, tip과 시료가 만들어 내는 벽면에서의 유체역학적 유동 저항성을 고려하는 것이 추가로 필요할 것으로 보인다. 향후 이러한 SICM 측정은 전기화학 표면 반응성을 분석하는 SECM (scanning electrochemical microscopy) 측정기술과 통합되어 SECM 측정 한계를 보완될 수 있을 것으로 기대된다. 그렇게 되면, 반도체 배선 공정 및 패키징 공정에 사용되고 있는 다양한 패턴 형상에서 무전해 도금의 촉매 반응과 전기도금에서 유기첨가제 작용의 국부적 차이를 직접적으로 측정하는 것이 가능하게 될 것으로 기대된다.

Scanning Electrochemical Microscopy를 이용한 한우 체내 수정란의 호흡률 조사 (Respiration Rates of Individual Bovine In Vivo-Produced Embryos Measured with a Novel, Scanning Electrochemical Microscopy)

  • 김현;복난희;김성우;도윤정;김민규;조상래;성환후;김동훈;고응규
    • 한국수정란이식학회지
    • /
    • 제29권1호
    • /
    • pp.91-99
    • /
    • 2014
  • Oxygen consumption is a useful parameter for evaluating mammalian embryo quality, since individual bovine embryos was noninvasively quantified by scanning electrochemical microscopy (SECM). Recently, several approaches have been used to measure the oxygen consumption rates of individual embryos, but relationship between oxygen consumption and pregnancy rates of Hanwoo following embryo transfer has not yet been reported. In this study, we measured to investigate the correlation between oxygen consumption rate and pregnancy rates of Hanwoo embryo using a SECM. In addition to, the expression of pluripotent gene and anti-oxidant enzyme was determined using real-time PCR by extracting RNA according to the oxygen consumption of in vivo embryo. First, we found that the oxygen consumption significantly increased in blastocyst-stage embryos (blastocyst) compared to early blastocyst stage embryos, indicating that oxygen consumption reflects the embryo quality (Grade I). Oxygen consumption of blastocyst was measured using a SECM and total cell number of in vitro blastocyst was enumerated by counting cells stained by propidium iodide. The oxygen consumption or GI blastocysts were significantly higher than those of GII blastocysts ($10.2{\times}10^{15}/mols^{-1}$ versus $6.4{\times}10^{15}/mols^{-1}$, p<0.05). Total cell numbers of in vitro blastocysts were 74.8, 90.7 and 110.2 in the oxygen consumption of below 10.0, 10.0~12.0 and over $12.0{\sim}10^{15}/mols^{-1}$, respectively. Pregnant rate in recipient cow was 0, 60 and 80% in the transplantation of embryo with the oxygen consumption of below 10.0, 10.0~12.0 and over $12.0{\times}10^{15}/mols^{-1}$, respectively. GPX1 and SOD1 were significantly increased in over -10.0 group than below 10.0 groups but in catalase gene, there was no significant difference. On the other hand, In OCT-4 and Sox2, pluripotent gene, there was a significant difference (p<0.05) between the below-10.0 ($0.98{\pm}0.1$) and over 10.0 ($1.79{\pm}0.2$). In conclusion, these results suggest that measurement of oxygen consumption maybe help increase the pregnant rate of Hanwoo embryos.

다기능 NSOM (mf-NSOM) 을 이용한 나노 구조 재료 분석에 관한 원리와 응용 (Fundamentals and Applications of Multi-functional NSOM Technology to Characterization of Nano Structured Materials)

  • 이우진;변수일
    • 전기화학회지
    • /
    • 제7권2호
    • /
    • pp.108-123
    • /
    • 2004
  • 최근 근접장 광학주사현미경 (NSOM)을 이용한 재료의 표면 및 구조 분석은 생물학에서 재료과학에까지 광범위하게 응용되고 있다. 본 총설에서는 기존의 NSOM을 여러가지 현미경법 (광학, 형광, 전자 및 전기화학 현미경 관찰법)과 접목하여 구성한 다기능 NSOM (multi-functional NSOM, mf-NSOM)을 이용, 나노 재료의 고분해능 이미징에 대한 원리와 응용을 고찰하였다. 본 mf-NSOM 기술을 이용하여 실제로 Al합금 및 다결정 Ti 표면에서의 공식 (pitting)을 일으키는 취약 지역을 광학적으로 분석한 결과를 기술하였다. 또한, mf-NSOM과 레이저 기술을 통해 나노 Ag 입자를 형성하고 실시간 분석한 연구결과에 대해서도 소개하고자 한다.

한우 수정란의 발달 단계별 산소 소비량 변화 (Changes in Oxygen Consumption Rates of Embryos in Korean Cattle)

  • 최창용;조상래;손준규;최선호;조창연;김재범;김성재;강다원;손동수
    • 한국수정란이식학회지
    • /
    • 제24권3호
    • /
    • pp.231-235
    • /
    • 2009
  • Oxygen consumption has been regarded as a useful indicator for assessment of mammalian embryo quality. However, there was no standard criterion to measure the oxygen consumption of embryos. Here, we measured oxygen consumption of bovine embryos at various developmental stages was measured using a scanning electrochemical microscopy (SECM). We found that the oxygen consumption significantly increased in blastocyst-stage embryos compared to other stage embryos (from 2-cell-stage to morula-stage), indicating that oxygen consumption reflects the cell number ($5.2{\sim}7.6{\times}10^{14}/mol\;s^{-1}$ versus $1.2{\sim}2.4{\times}10^{14}/mol\;s^{-1}$, p<0.05). In the morula-stage embryos, the oxygen consumption of in vivo derived embryos was significantly higher than that of in vitro produced embryos ($4.0{\times}10^{14}/mol\;s^{-1}$ versus $2.4{\times}10^{14}/mol\;s^{-1}$, p<0.05). However, there was no significant difference in consumption of oxygen by in vivo and in vitro-derived bovine blastocyst-stage embryos (p>0.05). In the frozen-thawed blastocyst-stage embryos, live embryos showed significantly higher oxygen consumption than dead embryos ($4.7{\times}10^{14}/mol\;s^{-1}$ versus $1.0{\times}10^{14}/mol\;s^{-1}$, p<0.05). These results indicate that the measuring oxygen consumption by SECM can be used to evaluate bovine embryo quality.

한우 수정란의 산소 소비량이 수청란이식 수태윷에 미치는 영향 (Effects of Pregnant Rate after Embryo Transfer in Oxygen Consumption of Embryos in Korean Cattle)

  • 최창용;손준규;조상래;강다원;연성흠;최선호;최수호;김남태;김재범;정연섭;김성재;정진우;복난희;유용희;손동수
    • 한국수정란이식학회지
    • /
    • 제25권3호
    • /
    • pp.145-148
    • /
    • 2010
  • Oxygen consumption has been regarded as a useful indicator for assessment of mammalian embryo quality. This study was performed to investigate whether oxygen consumption reflects morphological grade of in vivo derived bovine blastocyst-stage embryos (blastocyst). The oxygen consumption of in vitro produced blastocyst was compared to its total cell number. In addition, pregnant rate was measured after transplantation of in vivo blastocysts with different oxygen consumption. The quality of blastocyst collected on day 7 after artificial insemination was categorized as grade I and II (G I and G II) based on microscopic observation of the morphology. Oxygen consumption of blastocyst was measured using a scanning electrochemical microscopy (SECM) and total cell number of in vitro blastocyst was enumerated by counting cells stained by propidium iodide. Pregnancy of recipient cow was confirmed with rectal palpation after 60 days of embryo transfer. The oxygen consumptions of G I blastocysts were significantly higher than those of G II blastocysts ($10.2{\times}10^{15}/mol\;s^{-1}$ versus $6.4{\times}10^{15}/mol\;s^{-1}$, p<0.05). Total cell numbers of in vitro blastocysts were 74.8, 90.7, and 110.2 in the oxygen consumption of below 10.0, 10.0~12.0, and over $12.0{\sim}10^{15}/mol\;s^{-1}$ respectively. Total cell number was significantly increased in embryos with high oxygen consumption (p<0.05). Pregnant rate in recipient cow was 0, 50, and 85.7% in the transplantation of embryo with the oxygen consumption of below 10.0, 10.0~12.0, and over $12.0{\times}10^{15}/mol\;s^{-1}$, respectively. These results suggest that measurement of oxygen consumption may help increase the pregnant rate of bovine embryos.