Browse > Article
http://dx.doi.org/10.5229/JECST.2016.7.4.316

Applications of Scanning Electrochemical Microscopy (SECM) Coupled to Atomic Force Microscopy with Sub-Micrometer Spatial Resolution to the Development and Discovery of Electrocatalysts  

Park, Hyun S. (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
Jang, Jong Hyun (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
Publication Information
Journal of Electrochemical Science and Technology / v.7, no.4, 2016 , pp. 316-326 More about this Journal
Abstract
Development and discovery of efficient, cost-effective, and robust electrocatalysts are imperative for practical and widespread implementation of water electrolysis and fuel cell techniques in the anticipated hydrogen economy. The electrochemical reactions involved in water electrolysis, i.e., hydrogen and oxygen evolution reactions, are complex inner-sphere reactions with slow multi-electron transfer kinetics. To develop active electrocatalysts for water electrolysis, the physicochemical properties of the electrode surfaces in electrolyte solutions should be investigated and understood in detail. When electrocatalysis is conducted using nanoparticles with large surface areas and active surface states, analytical techniques with sub-nanometer resolution are required, along with material development. Scanning electrochemical microscopy (SECM) is an electrochemical technique for studying the surface reactions and properties of various types of electrodes using a very small tip electrode. Recently, the morphological and chemical characteristics of single nanoparticles and bio-enzymes for catalytic reactions were studied with nanometer resolution by combining SECM with atomic force microscopy (AFM). Herein, SECM techniques are briefly reviewed, including the AFM-SECM technique, to facilitate further development and discovery of highly active, cost-effective, and robust electrode materials for efficient electrolysis and photolysis.
Keywords
Electrochemistry; Electrocatalyst; Scanning Electrochemical Microscopy; Atomic Force Microscopy;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H.S. Park, K.C. Leonard and A.J. Bard, J. Phys. Chem. C, 2013, 117(23), 12093-12102.   DOI
2 D. Zigah, J. Rodriguez-Lopez and A.J. Bard, Phys. Chem. Chem. Phys, 2012, 14(37), 12764-12772.   DOI
3 D. Koley, M.M. Ramsey, A.J. Bard and M. Whiteley, Proc. Natl. Acad. Sci. USA, 2011, 108(50), 19996-20001.   DOI
4 D. Koley and A.J. Bard, Proc. Natl. Acad. Sci. USA, 2012, 109(29), 11522-11527.   DOI
5 A. J. Bard, F.R.F. Fan, D.T. Pierce, P.R. Unwin, D.O. Wipf and F. Zhou, Science, 1991, 254(5028), 68-74.   DOI
6 S. Amemiya, A.J. Bard, F.-R.F. Fan, M.V. Mirkin and P.R. Unwin, Annu. Rev. Anal. Che., 2008, 1, 95-131.   DOI
7 S. Bergner, P. Vatsyayan and F.-M. Matysik, Anal. Chim. Acta, 2013, 775, 1-13.   DOI
8 N. Baltes, L. Thouin, C. Amatore and J. Heinze, Angew. Chem. Int. Ed, 2004, 43(11), 1431-1435.   DOI
9 R.T. Kurulugama, D.O. Wipf, S.A. Takacs, S. Pongmayteegul, P.A. Garris and J.E. Baur, Anal. Chem, 2005, 77(4), 1111-1117.   DOI
10 X. Xiao, F.-R.F. Fan, J. Zhou and A.J. Bard, J. Am. Chem. Soc, 2008, 130(49), 16669-16677.   DOI
11 S.J. Kwon, F.-R.F. Fan and A.J. Bard, J. Am. Chem. Soc, 2010, 132(38), 13165-13167.   DOI
12 J.V. Macpherson, P.R. Unwin, A.C. Hillier and A.J. Bard, J. Am. Chem. Soc, 1996, 118(27), 6445-6452.   DOI
13 M.A. Derylo, K.C. Morton and L.A. Baker, Langmuir, 2011, 27(22), 13925-13930.   DOI
14 J. Abbou, C. Demaille, M. Druet and J. Moiroux, Anal. Chem, 2002, 74(24), 6355-6363.   DOI
15 K. Huang, A. Anne, M.A. Bahri and C. Demaille, ACS Nano, 2013, 7, 4151.   DOI
16 S.N. Thorgaard and P. Buhlmann, Anal. Chem, 2007, 79(23), 9224-9228.   DOI
17 A. Anne, E. Cambril, A. Chovin, C. Demaille and C. Goyer, ACS Nano, 2009, 3(10), 2927-2940.   DOI
18 M.N. Holder, C.E. Gardner, J.V. Macpherson and P.R. Unwin, J. Electroanal. Chem, 2005, 585(1), 8-18.   DOI
19 A. Ghorbal, F. Grisotto, J. Charlier, S. Palacin, C. Goyer and C. Demaille, ChemPhysChem, 2009, 10(7), 1053-1057.   DOI
20 A. Anne, E. Cambril, A. Chovin and C. Demaille, Anal. Chem, 2010, 82(15), 6353-6362.   DOI
21 J.D. Holladay, J. Hu, D.L. King and Y. Wang, Catal. Today, 2009, 139(4), 244-260.   DOI
22 N. Armaroli and V. Balzani, Angew. Chem. Int. Ed, 2007, 46(1-2), 52-66.   DOI
23 T. H. Jeon, S. K. Choi, H. W. Jeong, S. Kim and H. Park, J. Electrochem. Sci. Technol, 2011, 2(4), 187-192.   DOI
24 A. Fujishima and K. Honda, Nature, 1972, 238, 37-38.   DOI
25 S.Y. Reece, J. A. Hamel, K. Sung, T.D. Jarvi, A.J. Esswein, J. J. Pijpers and D.G. Nocera, Scienc, 2011, 334(6056), 645-648.   DOI
26 O. Khaselev and J.A. Turner, Science, 1998, 280(5362), 425-427.   DOI
27 A.J. Bard, J. Am. Chem. Soc, 2010, 132(22), 7559-7567.   DOI
28 A. J. Bard and M.A. Fox, Acc. Chem. Res, 1995, 28(3), 141-145.   DOI
29 A. Kubacka, M. Fernandez-Garcia and G. Golon, Chem. Rev., 2012, 112(3), 1555-1614.   DOI
30 I.C. Man, H.-Y. Su, F. Calleo-Vallejo, H. A. Hansen, J. I. Martinez, N.G. Inoglu, J. Kitchin, T.F. Jaramillo, J.K. Jaramillo and J. Rossmeial, ChemCatChem, 2011, 3(7), 1159-1165.   DOI
31 C. Kranz, Analyst, 2014, 139(2), 336-352.   DOI
32 R.D.L. Smith, M.S. Prevot, R.D. Fagan, Z. Zhang, P.A. Sedach, M.K.J. Siu, S. Trudel and C.P. Berlinguette, Science, 2013, 340(6128), 60-63.   DOI
33 H. Ye, H.S. Park and A.J. Bard, J. Phys. Chem. C, 2011, 115(25), 12464-12470.   DOI
34 G. Binnig, C.F. Quate and Ch. Gerber, Phys. Rev. Lett, 1986, 56(9), 930.   DOI
35 D.J. Comstock, J. W. Elam, M. J. Pellin and M. C. Hersam, Anal. Chem, 2010, 82(4), 1270-1276 .   DOI
36 J. Izquierdo, A. Kiss, J. J. Santana, L. Nagy, I. Bitter, H. S. Isaacs, G. Nagy and R. M. Souto, J. Electrochem. Soc, 2013, 160(9), C451- C459.   DOI
37 J. H. Shim and Y. Lee, Anal. Chem, 2009, 81(20), 8571-8576.   DOI
38 M. Kang, D. Momotenko, A. Page, D. Perry and P. R. Unwin, Lanmuir, 2016, 32(32), 7993-8008.   DOI
39 E. Lee, M. Kim, J. Seong, H. Shin and G. Lim, Phys. Status Solidi RRL, 2013, 7(6), 406-409.   DOI
40 E. Lee, J. Sung, T. An, H. Shin, H. G. Nam and G. Lim, Analyst 2015, 140, 3150.   DOI
41 J. G. Ummadi, C. J. Downs, V. S. Joshi, J. L. Ferracane and D. Koley, Anal. Chem, 2016, 88(6), 3218-3226.   DOI
42 Y.-B. Cho, C. Lee and Y. Lee, J. Electrochem. Soc, 2015, 162(10), H792-H798.   DOI
43 F. Xu, B. Beak and C. Jung, J. Solid State Electrochem, 2012, 16(1), 305-311.   DOI
44 J. Kumaki, S.-I. Sakurai and E. Yashima, Chem. Soc. Rev, 2009, 38(3), 737-746.   DOI
45 A. J. Bard, F.-R. Fan, J. Kwak and O. Lev, Anal. Chem, 1989, 61(2), 132-138.   DOI
46 Y. Liu, Z. Wang and X. Zhang, Chem. Soc. Rev, 2012, 41(18), 5922-5932.   DOI
47 J. Zhong and D. He, Chem. Eur. J, 2012, 18(14), 4148-4155.   DOI
48 M.I. Giannotti and G.J. Vancso, ChemPhysChem, 2007, 8(16), 2290-2307.   DOI
49 F. J. Giessibl, S. Hembacher, H. Bielefeldt and J. Bielefeldt, Science, 2000, 289(5478), 422-425.   DOI
50 K. J. Neaves, L.P. Cooper, J.H. White, S.M. Carnally, D.T.F. Dryden, J.M. Edwardson and R.M. Henderson, Nucleic Acids Res, 2009, 37(6), 2053-2063.   DOI
51 M. V. Mirkin, W. Nogala, J. Velmurugan and Y. Wang, Phys. Chem. Chem. Phys, 2011, 13(48), 21196-21212.   DOI
52 Zaera, F. Chem. Rev, 2012, 112(5), 2920-2986.   DOI
53 M. E. Snowden, A.G. Guell, S.C.S. Gai, K. McKeley, N. Ebejer, M.A. O'Connell, A.W. Colburn and P.R. Unwin, Anal. Chem, 2012, 84(5), 2483-2491.   DOI
54 W. Kylberg, A.J. Wain and F.A. Castro, J. Phys. Chem. C, 2012, 116(33), 17384-17392.   DOI
55 C.M. Sanchez-Sanchez, J. Rodriguez-Lopez and A.J. Bard, Anal. Chem, 2008, 80(9), 3254-3260.   DOI
56 P. Bertoncello, Energy Environ. Sci. 2010, 3, 1620.   DOI
57 J.L. Fernandez, D.A. Walsh and A.J. Bard, J. Am. Chem. Soc, 2005, 127(1), 357-365.   DOI
58 B.R. Horrocks, M.V. Mirkin and A.J. Bard, J. Phys. Chem, 1994, 98(37), 9106 -9114.   DOI
59 Y. Cong, H.S. Park, S. Wang, H.X. Dang, F.-R.F. Fan, C.B. Mullins and A.J. Bard, J. Phys. Chem. C, 2012, 116(27), 14541-14550.   DOI
60 H.X. Dang, N.T. Hahn, H.S. Park, A.J. Bard and C.B. Mullins, J. Phys. Chem. C, 2012, 116(36), 19225-19232.   DOI
61 W. Liu, H. Ye and A.J. Bard, J. Phys. Chem. C., 2010, 114, 1201.   DOI
62 H. Ye, J. Lee, J.S. Jang and A.J. Bard, J. Phys. Chem. C, 2010, 114(31), 13322-13328.   DOI
63 H.S. Park, K.E. Kweon, H. Ye, E. Paek, G.S. Hwang and A.J. Bard, J. Phys. Chem. C, 2011, 115(36), 17870-17879.   DOI