Browse > Article
http://dx.doi.org/10.14773/cst.2017.16.1.1

Use of Local Electrochemical Methods (SECM, EC-STM) and AFM to Differentiate Microstructural Effects (EBSD) on Very Pure Copper  

Martinez-Lombardia, Esther (Vrije Universiteit Brussel, Research Group Electrochemical and Surface Engineering)
Lapeire, Linsey (Ghent University, Department of Materials Science and Engineering)
Maurice, Vincent (CNRS - Chimie ParisTech (UMR 8247), Institut de Recherche de Chimie Paris)
De Graeve, Iris (Vrije Universiteit Brussel, Research Group Electrochemical and Surface Engineering)
Klein, Lorena (CNRS - Chimie ParisTech (UMR 8247), Institut de Recherche de Chimie Paris)
Marcus, Philippe (CNRS - Chimie ParisTech (UMR 8247), Institut de Recherche de Chimie Paris)
Verbeken, Kim (Ghent University, Department of Materials Science and Engineering)
Kestens, Leo (Ghent University, Department of Materials Science and Engineering)
Gonzalez-Garcia, Yaiza (Delft University of Technology,Department of Materials Science and Engineering)
Mol, Arjan (Delft University of Technology,Department of Materials Science and Engineering)
Terryn, Herman (Vrije Universiteit Brussel, Research Group Electrochemical and Surface Engineering)
Publication Information
Corrosion Science and Technology / v.16, no.1, 2017 , pp. 1-7 More about this Journal
Abstract
When aiming for an increased and more sustainable use of metals a thorough knowledge of the corrosion phenomenon as function of the local metal microstructure is of crucial importance. In this work, we summarize the information presented in our previous publications[1-3] and present an overview of the different local (electrochemical) techniques that have been proven to be effective in studying the relation between different microstructural variables and their different electrochemical behavior. Atomic force microscopy (AFM)[1], scanning electrochemical microscopy (SECM)[2], and electrochemical scanning tunneling microscopy (EC-STM)[3] were used in combination with electron backscatter diffraction (EBSD). Consequently, correlations could be identified between the grain orientation and grain boundary characteristics, on the one hand, and the electrochemical behavior on the other hand. The grain orientation itself has an influence on the corrosion, and the orientation of the neighboring grains also seems to play a decisive role in the dissolution rate. With respect to intergranular corrosion, only coherent twin boundaries seem to be resistant.
Keywords
copper; microstructure; EBSD; EC-STM; AFM; SECM;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Lapeire, E. Martinez Lombardia, K. Verbeken, I. De Graeve, L. Kestens, and H. Terryn, Corros. Sci., 67, 179 (2012).
2 E. M. -Lombardia, Y. G. -Garcia, L. Lapeire, I. De Graeve, K. Verbeken, L. Kestens, J. Mol, and H. Terryn, , Electrochim. Acta, 116, 89 (2014).   DOI
3 E. M.-Lombardia, L. Lapeire, V. Maurice, I. D. Graeve, K. Verbeken, L. Klein, L. Kestens, P. Marcus, and H. Terryn, Electrochem. Commun., 41, 1 (2014).   DOI
4 A. Alfantazi, T. Ahmed, and D. Tromans, Mater. Design, 30, 2425 (2009).   DOI
5 H.-B. Lu, Y. Li, and F.-H.Wang, Electrochim. Acta, 52, 474 (2006).   DOI
6 E. Ghali, W. Dietzel, and K.-U. Kainer, J.Mater. Eng. Perform., 13, 7 (2004).   DOI
7 C. Van den Bos, H. Schnitger, X. Zhang, A. Hovestad, H. Terryn, and J. De Wit, Corros. Sci., 48, 1483 (2006).   DOI
8 F. Andreatta, H. Terryn, and J. de Wit, Corros. Sci., 45, 1733 (2003).   DOI
9 C. Caicedo-Martinez, E. Koroleva, G. Thompson, P. Skeldon, K. Shimizu, G. Hoellrigl, C. Campbell, and E. McAlpine, Corros. Sci., 44, 2611 (2002).   DOI
10 C. Yao, Z. Wang, S. L. Tay, T. Zhu, and W. Gao, J. Alloy. Compd., 602, 101 (2014).   DOI
11 A. Amirudin and S. Chawla, J. Natl. Sci. Found. Sri, 6, 27 (1978).
12 V. Maurice, L. Klein, H.-H. Strehblow, and P. Marcus, J. Phys. Chem. C, 111, 16351 (2007).   DOI
13 A. Seyeux, V. Maurice, L. Klein, and P. Marcus, J. Solid State Electr., 9, 337 (2005).   DOI
14 J. Kunze, V. Maurice, L. H. Klein, H.-H. Strehblow, and P. Marcus, Electrochim. Acta, 48, 1157 (2003).   DOI
15 M. Vogt, A. Lachenwitzer, O. Magnussen, and R. Behm, Surf. Sci., 399, 49 (1998).   DOI
16 G. Zhou and J. C. Yang, Appl. Surf. Sci., 222, 357 (2004).   DOI
17 F. Wiame, V. Maurice, and P. Marcus, Surf. Sci., 601, 1193 (2007).   DOI
18 M. Schweinsberg, A. Michaelis, and J. Schultze, Electrochim. Acta, 42, 3303 (1997).   DOI
19 B. Davepon, J. Schultze, U. König, and C. Rosenkranz, Surf. Coat. Technol., 169, 85 (2003).
20 J. R. Davis, Copper and copper alloys, p. ?, ASM international, Materials Park, OH (2001).
21 S. Kudelka, A. Michaelis, and J. Schultze, Electrochim. Acta, 41, 863 (1996).   DOI
22 S. Kudelka and J. Schultze, Electrochim. Acta, 42, 2817 (18).
23 Y. Huang and P. Prangnell, Acta Mater., 56, 1619 (7) (2008).   DOI
24 T. Konkova, S. Mironov, A. Korznikov, and S. Semiatin, Acta Mater., 58, 5262 (16) (2010).   DOI
25 T. P. Moat, H. Yang, F.-R. F. Fan, and A. J. Bard, J. Electrochem. Soc., 139, 3158 (11) (1992).   DOI
26 S. Kim, U. Erb, K. Aust, and G. Palumbo, Scr. Mater., 44, 835 (2001).   DOI
27 Z. Guoding, X. Qunjie, B. Loo, and A. T. Nonferr. Metal. Soc., 8, 308 (1998).
28 T. P. Moat, H. Yang, F.-R. F. Fan, and A. J. Bard, J. Electrochem. Soc., 139, 3158 (1992).   DOI
29 J. Kunze, V. Maurice, L. H. Klein, H.-H. Strehblow, and P. Marcus, Corros. Sci., 46, 245 (2004).   DOI
30 V. Randle, Scr. Mater., 54, 1011 (2006).   DOI
31 V. Gertsman and S. M. Bruemmer, Acta Mater., 49, 1589 (2001).   DOI
32 M. Kumar, A. J. Schwartz, and W. E. King, Acta Mater., 50, 2599 (2002).   DOI