• Title/Summary/Keyword: Scan technique

Search Result 594, Processing Time 0.034 seconds

Visualization of Structural Shape Information based on Octree using Terrestrial Laser Scanning (3D레이저스캐닝을 이용한 옥트리기반 구조물 형상정보 가시화)

  • Cha, Gichun;Lee, Donghwan;Park, Seunghee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.8-16
    • /
    • 2016
  • This study presents the visualization of shape information based on Octree using 3D laser scanning. The process of visualization was established to construct the Octree structure from the 3D scan data. The scan data was converted to a 2D surface through the mesh technique and the surface was then converted to a 3D object through the Raster/Vector transformation. The 3D object was transmitted to the Octree Root Node and The shape information was constructed by the recursive partitioning of the Octree Root Node. The test-bed was selected as the steel bridge structure in Sungkyunkwan University. The shape information based on Octree was condensed into 89.3%. In addition, the Octree compressibility was confirmed to compare the shape information of the office building, a computer science campus in Germany and a New College in USA. The basis is created by the visualization of shape information for double-deck tunnel and it will be expected to improve the efficiency of structural health monitoring and maintenance.

Implant prosthesis for fully edentulous patients using intra-oral scanning and abutment merging technique: A case report (무치악 환자에서 구강 스캔과 지대주 중첩을 이용한 임플란트 보철수복 증례)

  • Hwang, Chan-Hyeon;Jeong, Seung-Mi;Kim, Yong-Jun;Kim, Kyeong-Hee;Fang, Jeong-Whan;Kim, Dae-Hwan;Choi, Byung-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.1
    • /
    • pp.61-70
    • /
    • 2017
  • In this case, the impression surface of the existing denture was scanned and was inverted three-dimensionally to express the residual ridge form. Implant planning was performed on the superimposed data of the CT with the scanned image of the denture with radiopaque markers attached. At the day of surgery, customized abutments fabricated in accordance with the form of the gingival margin were linked with fixtures and temporary restorations were set. In the process of fabricating the final prosthesis after the osseointegration of implant fixture, the intraoral scan images at abutment level were merged with images of the abutments scanned and stored before implant surgery. By fabricating the final prosthesis with the abutments obtained by merging can increase the marginal fitness of the final prosthesis and simplify the clinical process.

Wood Shrinkage Measurement of Using a Flatbed Scanner (평판형 스캐너를 이용한 목재 수축률 측정)

  • Park, Yonggun;Chang, Yoon-Seong;Yang, Sang-Yun;Yeo, Hwanmyeong;Lee, Mi-Rim;Eom, Chang-Deuk;Kwon, Ohkyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.43-51
    • /
    • 2015
  • Wood shrinkage, an important study subject with regard to the use of wood, has long been studied by researchers. However, when the size of a wood specimen is measured, distortion must be taken into account, which can be accomplished by applying external force on the wood specimen. However, when measuring a large number of specimens, this technique can be a lengthy process. If the size is measured and the shrinkage is calculated from images acquired with a flatbed scanner, it is possible to reduce the error in the measurement and to shorten the measurement time because the images of many specimens can be acquired with one scan. To clearly establish the boundary between a wood specimen and the background in a scan, an image threshold method was applied here. The size of a wood specimen measured by means of a scanner image was found to be longer than the value determined with a vernier caliper. The maximum pixel size of a scan image for highly accurate shrinkage calculations compared with the use of a vernier caliper was 0.053 mm/pixel.

Signature-based Indexing Scheme for Similar Sub-Trajectory Retrieval of Moving Objects (이동 객체의 유사 부분궤적 검색을 위한 시그니쳐-기반 색인 기법)

  • Shim, Choon-Bo;Chang, Jae-Woo
    • The KIPS Transactions:PartD
    • /
    • v.11D no.2
    • /
    • pp.247-258
    • /
    • 2004
  • Recently, there have been researches on storage and retrieval technique of moving objects, which are highly concerned by user in database application area such as video databases, spatio-temporal databases, and mobile databases. In this paper, we propose a new signature-based indexing scheme which supports similar sub-trajectory retrieval at well as good retrieval performance on moving objects trajectories. Our signature-based indexing scheme is classified into concatenated signature-based indexing scheme for similar sub-trajectory retrieval, entitled CISR scheme and superimposed signature-based indexing scheme for similar sub-trajectory retrieval, entitled SISR scheme according to generation method of trajectory signature based on trajectory data of moving object. Our indexing scheme can improve retrieval performance by reducing a large number of disk access on data file because it first scans all signatures and does filtering before accessing the data file. In addition, we can encourage retrieval efficiency by appling k-warping algorithm to measure the similarity between query trajectory and data trajectory. Final]y, we evaluate the performance on sequential scan method(SeqScan), CISR scheme, and SISR scheme in terms of data insertion time, retrieval time, and storage overhead. We show from our experimental results that both CISR scheme and SISR scheme are better than sequential scan in terms of retrieval performance and SISR scheme is especially superior to the CISR scheme.

Investigation of Perfusion-weighted Signal Changes on a Pulsed Arterial Spin Labeling Magnetic Resonance Imaging Technique: Dependence on the Labeling Gap, Delay Time, Labeling Thickness, and Slice Scan Order (동맥스핀표지 뇌 관류 자기공명영상에서 라벨링 간격 및 지연시간, 표지 두께, 절편 획득 순서의 변화에 따른 관류 신호변화 연구)

  • Byun, Jae-Hoo;Park, Myung-Hwan;Kang, Ji-Yeon;Lee, Jin-Wan;Lee, Kang-Won;Jahng, Geon-Ho
    • Progress in Medical Physics
    • /
    • v.24 no.2
    • /
    • pp.108-118
    • /
    • 2013
  • Currently, an arterial spin labeling (ASL) magnetic resonance imaging (MRI) technique does not routinely used in clinical studies to measure perfusion in brain because optimization of imaging protocol is required to obtain optimal perfusion signals. Therefore, the objective of this study was to investigate changes of perfusion-weighed signal intensities with varying several parameters on a pulsed arterial spin labeling MRI technique obtained from a 3T MRI system. We especially evaluated alternations of ASL-MRI signal intensities on special brain areas, including in brain tissues and lobes. The signal targeting with alternating radiofrequency (STAR) pulsed ASL method was scanned on five normal subjects (mean age: 36 years, range: 29~41 years) on a 3T MRI system. Four parameters were evaluated with varying: 1) the labeling gap, 2) the labeling delay time, 3) the labeling thickness, and 4) the slice scan order. Signal intensities were obtained from the perfusion-weighted imaging on the gray and white matters and brain lobes of the frontal, parietal, temporal, and occipital areas. The results of this study were summarized: 1) Perfusion-weighted signal intensities were decreased with increasing the labeling gap in the bilateral gray matter areas and were least affected on the parietal lobe, but most affected on the occipital lobe. 2) Perfusion-weighted signal intensities were decreased with increasing the labeling delay time until 400 ms, but increased up to 1,000 ms in the bilateral gray matter areas. 3) Perfusion-weighted signal intensities were increased with increasing the labeling thickness until 120 mm in both the gray and white matter. 4) Perfusion-weighted signal intensities were higher descending scans than asending scans in both the gray and white matter. We investigated changes of perfusion-weighted signal intensities with varying several parameters in the STAR ASL method. It should require having protocol optimization processing before applying in patients. It has limitations to apply the ASL method in the white matter on a 3T MRI system.

Development of Radar-Based Multi-Sensor Quantitative Precipitation Estimation Technique (레이더기반 다중센서활용 강수추정기술의 개발)

  • Lee, Jae-Kyoung;Kim, Ji-Hyeon;Park, Hye-Sook;Suk, Mi-Kyung
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.433-444
    • /
    • 2014
  • Although the Radar-AWS Rainrate (RAR) calculation system operated by Korea Meteorological Administration estimated precipitation using 2-dimensional composite components of single polarization radars, this system has several limitations in estimating the precipitation accurately. To to overcome limitations of the RAR system, the Korea Meteorological Administration developed and operated the RMQ (Radar-based Multi-sensor Quantitative Precipitation Estimation) system, the improved version of NMQ (National Mosaic and Multi-sensor Quantitative Precipitation Estimation) system of NSSL (National Severe Storms Laboratory) for the Korean Peninsula. This study introduced the RMQ system domestically for the first time and verified the precipitation estimation performance of the RMQ system. The RMQ system consists of 4 main parts as the process of handling the single radar data, merging 3D reflectivity, QPE, and displaying result images. The first process (handling of the single radar data) has the pre-process of a radar data (transformation of data format and quality control), the production of a vertical profile of reflectivity and the correction of bright-band, and the conduction of hydrid scan reflectivity. The next process (merger of 3D reflectivity) produces the 3D composite reflectivity field after correcting the quality controlled single radar reflectivity. The QPE process classifies the precipitation types using multi-sensor information and estimates quantitative precipitation using several Z-R relationships which are proper for precipitation types. This process also corrects the precipitation using the AWS position with local gauge correction technique. The last process displays the final results transformed into images in the web-site. This study also estimated the accuracy of the RMQ system with five events in 2012 summer season and compared the results of the RAR (Radar-AWS Rainrate) and RMQ systems. The RMQ system ($2.36mm\;hr^{-1}$ in RMSE on average) is superior to the RAR system ($8.33mm\;hr^{-1}$ in RMSE) and improved by 73.25% in RMSE and 25.56% in correlation coefficient on average. The precipitation composite field images produced by the RMQ system are almost identical to the AWS (Automatic Weather Statioin) images. Therefore, the RMQ system has contributed to improve the accuracy of precipitation estimation using weather radars and operation of the RMQ system in the work field in future enables to cope with the extreme weather conditions actively.

Evaluation of the Low Tube Voltage in the Computed Tomography Scan Technique using a Low Concentration Contrast Agent (저농도 조영제를 사용한 CT검사에서 저관전압 기법에 따른 유용성 평가)

  • Jung, Kang-Kyo;Cho, Pyong-Kon
    • Journal of radiological science and technology
    • /
    • v.39 no.1
    • /
    • pp.71-79
    • /
    • 2016
  • The purpose of this study is computed tomography contrast agent at low concentrations and low tube voltage technique to evaluate the usefulness on the phantom image. By varying the degree of mixture by the contrast medium concentration it was inserted in phantom. It was taken by changing the tube voltage and tube current step by step, and to evaluate the dose and the CT value obtained from the phantom image. As a result, low-contrast, low tube voltage(300 mgI/ml, 100 kV) was reduced by an average 21%(CTDIvol; computed tomography dose indexvol) more standard condition(350 mgI/ml, 120 kV). SNR was increased at all depths of the phantom, respectively 1:10 and 1:20(by diluting a contrast agent and normal saline) 12.2(26%) 6.2(17%). CNR was increased at all depths of the phantom, respectively 1:10 and 1:20(by diluting a contrast agent and normal saline) 11.5(32%), 6.3(26%). Research work on the CT scan is necessary in a variety of studies on the low contrast concentration and low tube voltage techniques for dose reduction and reducing of side effects the contrast agent.

Application of various digital technique on full mouth rehabilitation: A case report (디지털 기술을 활용한 전악 고정성 보철 수복 증례)

  • Bae, Min-Soo;Song, Kwang-Yeob;Ahn, Seung-Geun;Park, Ju-Mi;Lee, Jung-Jin;Seo, Jae-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.1
    • /
    • pp.43-54
    • /
    • 2021
  • Based on rapid improvement in digital fields, many advanced digital technologies are utilized in prosthodontic treatment. Especially, intraoral scanners and 3D printing technology are commonly used, and facial scanning technology is recently being attempted to be part of these digital routines. This case report aims to introduce a digital procedure using the intraoral scanner, facial scanner, and 3D printing technology to create definitive restorations, which are esthetic and harmonious with patient's face. From thoroughly evaluated full-mouth provisional restoration which was manufactured and fitted conventionally, definitive prostheses were fabricated using various digital technique. Stable occlusion with functionally and aesthetically satisfying results were achieved.

Characterization of Deep Learning-Based and Hybrid Iterative Reconstruction for Image Quality Optimization at Computer Tomography Angiography (전산화단층촬영조영술에서 화질 최적화를 위한 딥러닝 기반 및 하이브리드 반복 재구성의 특성분석)

  • Pil-Hyun, Jeon;Chang-Lae, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • For optimal image quality of computer tomography angiography (CTA), different iodine concentrations and scan parameters were applied to quantitatively evaluate the image quality characteristics of filtered back projection (FBP), hybrid-iterative reconstruction (hybrid-IR), and deep learning reconstruction (DLR). A 320-row-detector CT scanner scanned a phantom with various iodine concentrations (1.2, 2.9, 4.9, 6.9, 10.4, 14.3, 18.4, and 25.9 mg/mL) located at the edge of a cylindrical water phantom with a diameter of 19 cm. Data obtained using each reconstruction technique was analyzed through noise, coefficient of variation (COV), and root mean square error (RMSE). As the iodine concentration increased, the CT number value increased, but the noise change did not show any special characteristics. COV decreased with increasing iodine concentration for FBP, adaptive iterative dose reduction (AIDR) 3D, and advanced intelligent clear-IQ engine (AiCE) at various tube voltages and tube currents. In addition, when the iodine concentration was low, there was a slight difference in COV between the reconstitution techniques, but there was little difference as the iodine concentration increased. AiCE showed the characteristic that RMSE decreased as the iodine concentration increased but rather increased after a specific concentration (4.9 mg/mL). Therefore, the user will have to consider the characteristics of scan parameters such as tube current and tube voltage as well as iodine concentration according to the reconstruction technique for optimal CTA image acquisition.

Fusion of Gamma and Realistic Imaging (감마영상과 실사영상의 Fusion)

  • Kim, Yun-Cheol;Yu, Yeon-Uk;Seo, Young-Deok;Moon, Jong-Woon;Kim, Yeong-Seok;Won, Woo-Jae;Kim, Seok-Ki
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.78-82
    • /
    • 2010
  • Purpose: Recently, South Korea has seen a rapidly increased incidence of both breast and thyroid cancers. As a result, the I-131 scan and lymphoscintigraphy have been performed more frequently. Although this type of diagnostic imaging is prominent in that visualizes pathological conditions, which is similar to previous nuclear diagnostic imaging techniques, there is not much anatomical information obtained. Accordingly, it has been used in different ways to help find anatomical locations by transmission scan, however the results were unsatisfactory. Therefore, this study aims to realize an imaging technique which shows more anatomical information through the fusion of gamma and realistic imaging. Materials and Methods: We analyzed the data from patients who were examined by the lymphoscintigraphy and I-131 additional scan by Symbia Gamma camera (SIEMENS) in the nuclear medicine department of the National Cancer Center from April to July of 2009. First, we scanned the same location in patients by using a miniature camera (R-2000) in hyVISION. Afterwards, we scanned by gamma camera. The data we obtained was evaluated based on the scanning that measures an agreement of gamma and realistic imaging by the Gamma Ray Tool fusion program. Results: The amount of radiation technicians and patients were exposed was generated during the production process of flood source and applied transmission scan. During this time, the radiation exposure dose of technicians was an average of 14.1743 ${\mu}Sv$, while the radiation exposure dose of patients averaged 0.9037 ${\mu}Sv$. We also confirmed this to matching gamma and realistic markers in fusion imaging. Conclusion: Therefore, we found that we could provide imaging with more anatomical information to clinical doctors by fusion of system of gamma and realistic imaging. This has allowed us to perform an easier method in which to reduce the work process. In addition, we found that the radiation exposure can be reduced from the flood source. Eventually, we hope that this will be applicable in other nuclear medicine studies. Therefore, in order to respect the privacy of patients, this procedure will be performed only after the patient has agreed to the procedure after being given a detailed explanation about the process itself and its advantages.

  • PDF