• Title/Summary/Keyword: Scan mode

Search Result 196, Processing Time 0.027 seconds

Scan Element Pattern and Scan Impedance of Open-Ended Waveguide Away Antenna (개방형 도파관 배열 안테나의 조향 소자 패턴 및 조향 임피던스에 관한 연구)

  • Yu, Je-Woo;Rah, Dong-Kyoon;Kim, Dong-Seok;Kim, Chan-Hong;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.1 s.116
    • /
    • pp.7-14
    • /
    • 2007
  • In this paper, the scan characteristics of phased array antenna consisted of rectangular open-ended waveguide with a triangular grid are investigated. An infinite array structure is analyzed by numerically solving the integral equation for the electric field over the waveguide aperture using waveguide mode function and Floquet mode function. Next, SEP(Scan Element Pattern) and SI(Scan Impedance) characteristics are simulated by CST's MWS(Microwave Studio) and Ansoft's HFSS(High Frequency Structure Simulator) for the finite and infinite array structures. Also, validity of these approaches is verified by comparing the calculated and simulated results with the measured ones for an $8{\times}8$ subarray. Within 10.5 % fractional bandwidth in the X-band, the fabricated subarray showed the flat gain characteristic in the scan range of ${\pm}45^{\circ}C$ in the E-plane(azimuth) and ${\pm}20^{\circ}C$ in the H-plane(elevation), and also showed the return loss characteristic of less than -10 dB.

Clinical Usefulness of 99mTc-DMSA Renal SPECT Using High Sensitivity-All Purpose Collimator for Pediatric Patients (고감도 범용성 콜리메이터를 이용한 소아 환자 99mTc-DMSA 신장 SPECT의 유용성)

  • Kim, Jin-Eui;Kim, Jung-Soo;Han, Jae-Bok;Choi, Nam-Gil
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.3
    • /
    • pp.219-231
    • /
    • 2016
  • $^{99m}Tc$-DMSA planar scan that can analyze the functions of kidney quantitatively provides less information on a lesion than tomography scanning. Therefore, this study applied a high sensitivity all-purpose collimator that is sensitive to photonic signals to $^{99m}Tc$-DMSA and carried out a clinical scan with single photon emission computed tomography (SPECT). And diagnostic accuracy and time requirement of were analyzed to know the clinical usefulness of the applied scanning method. 10 subjects were intravenously injected with radiopharmaceutical product (1.0-1.2 MBq/kg) and scanned by a gamma camera with planar scanner (high resolution (HR)-mode, $256{\times}256$, 50 kcts/view, 4 image) and SPECT (HR / high sensitive (HS)-mode, $128{\times}128$, step and shoot, $180^{\circ}$, variable sec/angle, total 64 frame, OSEM reconstruction), respectively. The collected data was compared with an analysis program. The results showed that HS-mode SPECT detected total counts 1.8-5.6 times more than planar scan. Relative renal function evaluated based on the counts was not significantly different by two scanning methods (p=0.96) and it turned out that test time was shortened by 39% when HS-mode SPECT was used. Therefore, SPECT using HR, HS-mode collimator could analyze renal function more quantitatively than using planar scan and the former could diagnose the location information of a lesion more accurately than the latter as well as shortened test time requirement, which demonstrated the clinical usefulness of $^{99m}Tc$-DMSA renal SPECT using high sensitivity all purpose collimator.

Efficient Test Wrapper Design in SoC (SoC 내의 효율적인 Test Wrapper 설계)

  • Jung, Jun-Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.6
    • /
    • pp.1191-1195
    • /
    • 2009
  • We present the efficient test wrapper design methodology considering the layout distance of scan chain. To test the scan chains in SoC, the scan chains must be assigned to external TAM(Test Access Mechanism) lines. The scan chains in IP were placed and routed without any timing violation at normal mode. However, in test mode, the scan chains have the additional layout distance after TAM line assignment, which can cause the timing violation of flip-flops in scan chains. This paper proposes a new test wrapper design considering layout distance of scan chains with timing violation free.

System Performance Analysis for Multi-Band SweepSAR Operating Mode (다중대역 SweepSAR 운용 모드의 시스템 성능 분석)

  • Yoon, Seong-Sik;Lee, Jae-Wook;Lee, Taek-kyung;Ryu, Sang-Burm;Lee, Hyeon-Cheol;Kang, Eun-Su;Lee, Sang-Gyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.3
    • /
    • pp.186-194
    • /
    • 2017
  • In this paper, we analyze the main performance of satellite's Synthetic Aperture Radar system for high resolution and wide swath. We have used the radiation pattern of reflector antenna with array feed and comparison between the conventional ScanSAR mode and SweepSAR mode has been carried out. The SweepSAR mode is a high-resolution wide-swath mode that transmits beams over a wide range and receives echo signals through sequential beamforming based on SCORE(SCan On REceive). In this paper, we analyzed the operating principle and characteristics of satellite's SweepSAR mode and simulate system performances. In addition, in order to increase the utilization of image, performances analysis for multiple frequency bands(C-band, X-band) has been considered.

Design Technique for Wide Swath SAR TOPS imaging Mode (광역관측을 위한 영상레이더 TOPS 모드 설계 기법)

  • Kim, Se-Young;Sung, Jin-Bong;Yi, Dong-Woo;Shim, Sang-Heun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.466-471
    • /
    • 2015
  • In this paper, the design technique of the wide swath TOPS(Terrain Observation by Progressive Scan) imaging mode is introduced. The TOPS mode overcomes the scalloping limitations imposed by ScanSAR mode by steering the antenna pattern along track direction during the acquisition of a burst. This paper reports the operation concept of TOPS imaging and mode design result to extract the SAR operational parameters. Finally, several analyzed results such as IRF(Impulse Response Function), NESZ(Noise Equivalent Sigma Zero) and DTAR(Distributed Target Ambiguity Ratio) are presented.

Radarsat-1 ScanSAR Quick-look Signal Processing and Demonstration Using SPECAN Algorithm (SPECAN 알고리즘을 이용한 Radatsat-1 ScanSAR Quick-look 신호 처리 및 검증 알고리즘 구현)

  • Song, Jung-Hwan;Lee, Woo-Kyung;Kim, Dong-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.75-86
    • /
    • 2010
  • As the performance of the spaceborne SAR has been dramatically enhanced and demonstrated through advanced missions such as TerraSAR and LRO(Lunar Reconnaissance Orbiter), the need for highly sophisticated and efficient SAR processor is also highlighted. In Korea, the activity of SAR researches has been mainly concerned with SAR image applications and the current SAR raw data studies are mostly limited to stripmap mode cases. The first Korean spaceborne SAR is scheduled to be operational from 2010 and expected to deliver vast amount of SAR raw data acquired from multiple operational scenarios including ScanSAR mode. Hence there will be an increasing demand to implement ground processing systems that enable to analyze the acquired ScanSAR data and generate corresponding images. In this paper, we have developed an efficient ScanSAR processor that can be directly applied to spaceborne ScanSAR mode data. The SPECAN(Spectrum Analysis) algorithm is employed for this purpose and its performance is verified through RADARSAT-1 ScanSAR raw data taken over Korean peninsular. An efficient quick-look processing is carried out to produce a wide-swath SAR image and compared with the conventional RDA processing case.

A Study of Utilizing 2D Photo Scan Technology to Efficiently Design 3D Models (2D 포토 스캔 기술을 활용한 효율적인 3D 모델링 제작방법 연구)

  • Guo, Dawei;Chung, Jeanhun
    • Journal of Digital Convergence
    • /
    • v.15 no.7
    • /
    • pp.393-400
    • /
    • 2017
  • Generally, in special effect video and 3D animation design process, character and background's 3D model is built by 3D program like MAYA or 3DS MAX. But in that manual modeling mode, model design needs much time and costs much money. In this paper, two experimental groups are set to prove use 2D photo scan modeling mode to build 3D model is effective and advanced. The first experimental group is modeling the same object by different experimental setting. The second experimental group is modeling the same background by different experimental setting. Through those two experimental groups, we try to find an effective design method and matters need attention when we use photo scan design mode. We aim to get the model from whole experiment and prove photo scan modeling mode is effective and advanced.

A Novel High Performance Scan Architecture with Dmuxed Scan Flip-Flop (DSF) for Low Shift Power Scan Testing

  • Kim, Jung-Tae;Kim, In-Soo;Lee, Keon-Ho;Kim, Yong-Hyun;Baek, Chul-Ki;Lee, Kyu-Taek;Min, Hyoung-Bok
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.559-565
    • /
    • 2009
  • Power dissipation during scan testing is becoming an important concern as design sizes and gate densities increase. The high switching activity of combinational circuits is an unnecessary operation in scan shift mode. In this paper, we present a novel architecture to reduce test power dissipation in combinational logic by blocking signal transitions at the logic inputs during scan shifting. We propose a unique architecture that uses dmuxed scan flip-flop (DSF) and transmission gate as an alternative to muxed scan flip-flop. The proposed method does not have problems with auto test pattern generation (ATPG) techniques such as test application time and computational complexity. Moreover, our elegant method improves performance degradation and large overhead in terms of area with blocking logic techniques. Experimental results on ITC99 benchmarks show that the proposed architecture can achieve an average improvement of 30.31% in switching activity compared to conventional scan methods. Additionally, the results of simulation with DSF indicate that the powerdelay product (PDP) and area overhead are improved by 28.9% and 15.6%, respectively, compared to existing blocking logic method.

Evaluation about a Usefulness of ECG-Gated Scan on 13N-ammonia PET (13N-ammonia 심장 PET 검사에서 ECG gated scan의 유용성 평가)

  • Kim, Jae-Il;Lee, Hong-Jae;Kim, Jin-Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.1
    • /
    • pp.20-23
    • /
    • 2016
  • Purpose Because of heart movement, PET image of heart is very blur. So, PET scan gated with ECG is necessary to improve a spatial resolution of heart PET image. In this study, we will evaluate a image quality of both gated $^{13}N-ammonia$ PET scan and non-gated one. Materials and Methods Before start a heart PET, we attached a ECG electrode on patients (n = 5, $aged=54{\pm}17$). And we started a list mode PET scan that used by a mCT40 PET/CT (siemens, germany) during 10 minute, injected $^{13}N-ammonia$ ($378{\pm}50MBq$) to a patients at same time. By using this list mode data, we reconstructed both gated PET image and non-gated PET image. Then we analysed a profiles of those images, performed a blind test, and subtracted a gated image on non-gated image. Results FWHM of a gated image is improved about 23% and there is a differency count distribution at a subtracted image from non-gated image to a gated image. But in case of blind test, everybody select the gated image as a better quality among each images. Conclusion As a result, we can find that image quality will improve by using gated PET scan. In additional, we can calculate a EF valve, apply QGS, QPS of PET. Therefore, the gated PET scan help improving an accuracy, applying a more information for a diagnosis.

  • PDF

RADARSAT 자료를 이용한 Wind Vector 추출기법 연구

  • 김덕진;강성철;문우일
    • Proceedings of the KSRS Conference
    • /
    • 2000.04a
    • /
    • pp.79-84
    • /
    • 2000
  • 해양 영역에 대한 SAR(Synthetic Aperture Radar) 자료는 좋은 해상도로 기상조건이나 주야에 상관없이 wind vector를 구할 수 있는 장점이 있다. 해안지역의 scatterometer 자료는 육지의 영향으로 인하여 정확한 자료를 얻을 수 없지만, SAR자료를 이용하면, Scatterometer에 비해 좋은 해상도로 해안지역의 wind vector 추출이 가능하다. 본 연구에서는 SAR 자료로부터 풍속을 추출할 수 있는 CMOD_4와 CMOD_IFR2 알고리즘을 사용하였다. 이 알고리즘들은 정확한 sigma-naught 값과, 풍향, 그리고 local incidence angle을 입력변수로 요구한다. CMOD 알고리즘들은 ERS-1/2와 같이 C-band, VV-polarization을 위해 개발된 알고리즘이므로, C-band, HH-polarization을 가진 RADARSAT 자료에 바로 적용할 수가 없다. 이것을 해결하기 위해 본 연구에서는 두 CMOD 알고리즘을 몇 가지 polarization ratio와 같이 적용하여 보았다. 각 연구지역에 해당하는 자료에는 제주도 주변의 Fine mode 자료, 서해안과 제주도 근해의 Standard mode 자료, 그리고 동해안 지역의 ScanSAR 자료 등이다. 여러 가지 Polarization ratio와 CMOD 알고리즘의 조합, 그리고 2-DFFT로부터 추출된 풍향으로부터 각 연구지역의 풍속은 가까운 기상관측소 및, 부이의 관측값과 비교하였다. 그 결과 Fine mode 자료로부터 추출된 풍속은 실제 관측 값보다 항상 상당히 높게 나타났지만, Standard mode 나 ScanSAR 자료로부터 추출된 풍속은 현지 기상관측소 관측 값과 잘 일치한다.

  • PDF