• 제목/요약/키워드: Scan method

검색결과 1,528건 처리시간 0.044초

Recent Progress in Low Cost Dual-Select-Diode AMLCD Technology

  • Boer, Willem Den;Smith, G. Scott
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.873-877
    • /
    • 2005
  • Recent developments in Dual Select Diode (DSD) AMLCD technology are described. They include a novel array design and drive method with shared select lines, which leads to higher aperture ratio and a further reduction of module cost. A Color-On-Array DSD process and pixel layout compatible with In-Plane-Switching is also proposed.

  • PDF

A study on the structure and corrosion characteristics of polyethylene terephtalate and polyvinylchloride

  • Chilnam Choe;Hyo
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 한국환경과학회 1997년도 가을 학술발표회 프로그램
    • /
    • pp.58-58
    • /
    • 1997
  • The corrosion rate of polymer polyethylene terephtalate and polyvinylchloride was characterized at various condition by potentiostate / galvanostate method. The cell and working electrode used for this study was specially preparatain, The potential was scanned at foward scan -2V to 3V and reward scan 3V to -2V, at 50mv/s (R: auto - compensation).

  • PDF

Novel Scanning Tunneling Spectroscopy for Volatile Adborbates

  • Choi, Eun-Yeoung;Lee, Youn-Joo;Lyo, In-Whan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.58-58
    • /
    • 2010
  • Reactive or unstable adsorbates are often difficult to study spectroscopically. They may have, for instance, resonance states lying close to the Fermi level, inducing them to desorb or decompose by the probe itself, low-energy tunneling electrons. In order to overcome this limitation, we developed a novel method, which we call x-ramp scan. The method sweeps the bias voltage, with the simutaneous scan along the imaging direction, in a constant current mode. This mapping yields the tip-height variation as a function of bias, or Z(V), at nominally always fresh surface. We applied this method to the investigation of methanol-induced molecular features, attributed to methoxy, found on NiAl(110) surface. These were produced by methanol molecules deposited by a pulse injection method onto the metallic surface. Our study shows adsorbed methoxy are very reactive to the bias voltage, rendering the standard spectroscopy useless. Our new x-ramp scan shows that the decomposition of adsorbates occurs at the sample bias of 3.63 V, and proceeds with the lifetime of a few milliseconds. The details of the method will be provided at the discussion.

  • PDF

High-resolution Spiral-scan Imaging at 3 Tesla MRI (3.0 Tesla 자기공명영상시스템에서 고 해상도 나선주사영상)

  • Kim, P.K.;Lim, J.W.;Kang, S.W.;Cho, S.H.;Jeon, S.Y.;Lim, H.J.;Park, H.C.;Oh, S.J.;Lee, H.K.;Ahn, C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • 제10권2호
    • /
    • pp.108-116
    • /
    • 2006
  • Purpose : High-resolution spiral-scan imaging is performed at 3 Tesla MRI system. Since the gradient waveforms for the spiral-scan imaging have lower slopes than those for the Echo Planar Imaging (EPI), they can be implemented with the gradient systems having lower slew rates. The spiral-scan imaging also involves less eddy currents due to the smooth gradient waveforms. The spiral-scan imaging method does not suffer from high specific absorption rate (SAR), which is one of the main obstacles in high field imaging for rf echo-based fast imaging methods such as fast spin echo techniques. Thus, the spiral-scan imaging has a great potential for the high-speed imaging in high magnetic fields. In this paper, we presented various high-resolution images obtained by the spiral-scan methods at 3T MRI system for various applications. Materials and Methods : High-resolution spiral-scan imaging technique is implemented at 3T whole body MRI system. An efficient and fast higher-order shimming technique is developed to reduce the inhomogeneity, and the single-shot and interleaved spiral-scan imaging methods are developed. Spin-echo and gradient-echo based spiral-scan imaging methods are implemented, and image contrast and signal-tonoise ratio are controlled by the echo time, repetition time, and the rf flip angles. Results : Spiral-scan images having various resolutions are obtained at 3T MRI system. Since the absolute magnitude of the inhomogeneity is increasing in higher magnetic fields, higher order shimming to reduce the inhomogeneity becomes more important. A fast shimming technique in which axial, sagittal, and coronal sectional inhomogeneity maps are obtained in one scan is developed, and the shimming method based on the analysis of spherical harmonics of the inhomogeneity map is applied. For phantom and invivo head imaging, image matrix size of about $100{\times}100$ is obtained by a single-shot spiral-scan imaging, and a matrix size of $256{\times}256$ is obtained by the interleaved spiral-scan imaging with the number of interleaves of from 6 to 12. Conclusion : High field imaging becomes increasingly important due to the improved signal-to-noise ratio, larger spectral separation, and the higher BOLD-based contrast. The increasing SAR is, however, a limiting factor in high field imaging. Since the spiral-scan imaging has a very low SAR, and lower hardware requirements for the implementation of the technique compared to EPI, it is suitable for a rapid imaging in high fields. In this paper, the spiral-scan imaging with various resolutions from $100{\times}100$ to $256{\times}256$ by controlling the number of interleaves are developed for the high-speed imaging in high magnetic fields.

  • PDF

A Study on the Prediction of Buried Rebar Thickness Using CNN Based on GPR Heatmap Image Data (GPR 히트맵 이미지 데이터 기반 CNN을 이용한 철근 두께 예측에 관한 연구)

  • Park, Sehwan;Kim, Juwon;Kim, Wonkyu;Kim, Hansun;Park, Seunghee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제23권7호
    • /
    • pp.66-71
    • /
    • 2019
  • In this paper, a study was conducted on the method of using GPR data to predict rebar thickness inside a facility. As shown in the cases of poor construction, such as the use of rebars below the domestic standard and the construction of reinforcement, information on rebar thickness can be found to be essential for precision safety diagnosis of structures. For this purpose, the B-scan data of GPR was obtained by gradually increasing the diameter of rebars by making specimen. Because the B-scan data of GPR is less visible, the data was converted into the heatmap image data through migration to increase the intuition of the data. In order to compare the results of application of commonly used B-scan data and heatmap data to CNN, this study extracted areas for rebars from B-scan and heatmap data respectively to build training and validation data, and applied CNN to the deployed data. As a result, better results were obtained for the heatmap data when compared with the B-scan data. This confirms that if GPR heatmap data are used, rebar thickness can be predicted with higher accuracy than when B-scan data is used, and the possibility of predicting rebar thickness inside a facility is verified.

A Partial Scan Design by Unifying Structural Analysis and Testabilities (구조분석과 테스트 가능도의 통합에 의한 부분스캔 설계)

  • Park, Jong-Uk;Sin, Sang-Hun;Park, Seong-Ju
    • Journal of KIISE:Computer Systems and Theory
    • /
    • 제26권9호
    • /
    • pp.1177-1184
    • /
    • 1999
  • 본 논문에서는 스캔플립프롭 선택 시간이 짧고 높은 고장 검출률(fault coverage)을 얻을 수 있는 새로운 부분스캔 설계 기술을 제안한다. 순차회로에서 테스트패턴 생성을 용이하게 하기 위하여 완전스캔 및 부분스캔 설계 기술이 널리 이용되고 있다. 스캔 설계로 인한 추가영역을 최소화 하고 최대의 고장 검출률을 목표로 하는 부분스캔 기술은 크게 구조분석과 테스트 가능도(testability)에 의한 설계 기술로 나누어 볼 수 있다. 구조분석에 의한 부분스캔은 짧은 시간에 스캔플립프롭을 선택할 수 있지만 고장 검출률은 낮다. 반면 테스트 가능도에 의한 부분스캔은 구조분석에 의한 부분스캔보다 스캔플립프롭의 선택 시간이 많이 걸리는 단점이 있지만 높은 고장 검출률을 나타낸다. 본 논문에서는 구조분석에 의한 부분스캔과 테스트 가능도에 의한 부분스캔 설계 기술의 장단점을 비교.분석하여 통합함으로써 스캔플립프롭 선택 시간을 단축하고 고장 검출률을 높일 수 있는 새로운 부분스캔 설계 기술을 제안한다. 실험결과 대부분의 ISCAS89 벤치마크 회로에서 스캔플립프롭 선택 시간은 현격히 감소하였고 비교적 높은 고장 검출률을 나타내었다.Abstract This paper provides a new partial scan design technique which not only reduces the time for selecting scan flip-flops but also improves fault coverage. To simplify the problem of the test pattern generation in the sequential circuits, full scan and partial scan design techniques have been widely adopted. The partial scan techniques which aim at minimizing the area overhead while maximizing the fault coverage, can be classified into the techniques based on structural analysis and testabilities. In case of the partial scan by structural analysis, it does not take much time to select scan flip-flops, but fault coverage is low. On the other hand, although the partial scan by testabilities generally results in high fault coverage, it requires more time to select scan flip-flops than the former method. In this paper, we analyzed and unified the strengths of the techniques by structural analysis and by testabilities. The new partial scan design technique not only reduces the time for selecting scan flip-flops but also improves fault coverage. Test results demonstrate the remarkable reduction of the time to select the scan flip-flops and high fault coverage in most ISCAS89 benchmark circuits.

Development of Ultrasonic Defect Analysis Program for a Composite Motor Case (복합재 연소관의 초음파 결함 분석 프로그램 개발)

  • Kim, Dong-Ryun;Lim, Soo-Yong;Chung, Sang-Ki;Lee, Kyung-Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • 제16권2호
    • /
    • pp.65-72
    • /
    • 2012
  • A defect analysis program for a composite motor case was developed to apply the ultrasonic signal processing method, based on the ultrasonic pulse-echo method. With the proposed defect analysis program, defects of FRP delamination and FRP/Rubber disbond in the composite motor case could be quantitatively measured. The defects detected in the composite motor case were in good agreement with the results measured with the computed tomography and video microscope. This paper described the development process of the defect analysis program to convert the ultrasonic test data into the C-Scan images.