• 제목/요약/키워드: Scaling-Simulation

Search Result 357, Processing Time 0.026 seconds

A Study of Dopant Distribution in SiGe Using Ion Implantation and Thermal Annealing (SiGe에 이온 주입과 열처리에 의한 불순물 분포의 연구)

  • Jung, Won-Chae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.377-385
    • /
    • 2018
  • For the investigation of dopant profiles in implanted $Si_{1-x}Ge_x$, the implanted B and As profiles are measured using SIMS (secondary ion mass spectrometry). The fundamental ion-solid interactions of implantation in $Si_{1-x}Ge_x$ are discussed and explained using SRIM, UT-marlowe, and T-dyn programs. The annealed simulation profiles are also analyzed and compared with experimental data. In comparison with the SIMS data, the boron simulation results show 8% deviations of $R_p$ and 1.8% deviations of ${\Delta}R_p$ owing to relatively small lattice strain and relaxation on the sample surface. In comparison with the SIMS data, the simulation results show 4.7% deviations of $R_p$ and 8.1% deviations of ${\Delta}R_p$ in the arsenic implanted $Si_{0.2}Ge_{0.8}$ layer and 8.5% deviations of $R_p$ and 38% deviations of ${\Delta}R_p$ in the $Si_{0.5}Ge_{0.5}$ layer. An analytical method for obtaining the dopant profile is proposed and also compared with experimental and simulation data herein. For the high-speed CMOSFET (complementary metal oxide semiconductor field effect transistor) and HBT (heterojunction bipolar transistor), the study of dopant profiles in the $Si_{1-x}Ge_x$ layer becomes more important for accurate device scaling and fabrication technologies.

A Dynamic Simulation for Small Turboshaft Engine with Free Power Turbine Using The CMF Method (CMF 기법을 이용한 소형 분리축 방식 터보축 엔진의 동적모사)

  • 공창덕;기자영
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.1
    • /
    • pp.13-20
    • /
    • 1998
  • A steady-state and dynamic simulation program for a small multi-purpose turboshaft engine with the free power turbine was developed. In order to reduce developing cost, time and risk, a turbojet engine whose performance was well-known was used for the gas generator, and life time was improved by replacing turbine material and by using Larson-Miller curves. The component characteristic of the power turbine was derived from scaling the gas generator turbine. Equilibrium equations of mass flow rate and work were used for the steady-state performance analysis, and the Constant Flow Method(CMF) was used for the dynamic performance simulation. The step fuel scheduling was carried out for acceleration in the dynamic simulation. Through this simulation, it was found that the overshoot of the turbine inlet temperature exceeded over the compressor turbine limit temperature.

  • PDF

Steady-state Performance Simulation and Operation Diagnosis of a 2-spool Separate Flow Type Turbofan Engine (2스풀 분리 배기 방식 엔진의 정상상태 성능모사 및 작동 진단)

  • Choo, KyoSeung;Sung, Hong-Gye
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.1
    • /
    • pp.38-46
    • /
    • 2019
  • There is a growing interest in engine diagnostic technology for gas turbine engines. An engine simulation program, precisely simulating the engine performance, is required in order to apply it to the engine diagnosis technology for engine health monitoring. In particular, the simulation program can predict not only design point performance but also off-design point and partial load performance in accurate. So the engine simulation program for the 2-spool separate flow type turbofan engine was developed and the JT9D-7R4G engine of PW(Pratt & Whitney) was analyzed. The steady-sate performance analysis is conducted at both design and off-design points in flight path and the differences between analysis results of takeoff and cruise conditions are compared. The effect of Reynold's correction method was analyzed as a scaling method of the engine component performance. The simulation results was compared with NPSS.

Modeling and Simulation of a Gas Turbine Engine for Control of Mechanical Propulsion Systems (기계식 추진 시스템 제어를 위한 가스터빈 엔진 모델링 및 시뮬레이션)

  • Back, Kyeongmi;Huh, Hwanil;Ki, Jayoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.43-52
    • /
    • 2021
  • In this study, performance modeling and simulation of a gas turbine engine, a constituent module, was performed for the integrated control of the CODOG structure, mechanical propulsion systems. The engine model used MATLAB/Simulink to facilitate integration with the host controller and other components, and was configured to enable input/output settings suitable for the system configuration and purpose. In general, engine manufacturers do not provide performance data for the engine and components. Therefore, as a modeling method for a gas turbine, a CMF method that obtains performance data by scaling the map of components was applied. Using the generated model and simulation program, steady-state and dynamic simulation analysis tests were performed, and reliability within 5% of the maximum error was secured for the final output of power.

Analysts on the Sealing of Nano Structure MOSFET (나노 구조 MOSFET의 스켈링에 대한 특성 분석)

  • 장광균;정학기;이종인
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.3
    • /
    • pp.573-579
    • /
    • 2001
  • The technology for characteristic analysis of device for high integration is changing rapidly. Therefore to understand characteristics of high -integrated device by computer simulation and fabricate the device having such characteristics became one of very important subjects. As devices become smaller from submicron to nanometer, we have investigated MOSFET built on an epitaxial layer(EPI) of a heavily-doped ground plane by TCAD(Technology Computer Aided Design) to develop optimum device structure. We analyzed and compared the EPI device characteristics such as impact ionization, electric field and I-V curve with those of lightly doped drain(LDD) MOSFET. Also, we presented that TCAD simulator is suitable for device simulation and the scaling theory is suitable at nano structure device.

  • PDF

Design of Fuzzy Controller for Firing Angle of TCSC Using Tabu Search (Tabu Search를 이용한 TCSC의 점호각 제어용 퍼지 제어기의 설계)

  • Kim, Woo-Geun;Hwang, Gi-Hyeon;Mun, Gyeong-Jun;Kim, Hyeong-Su;Park, Jun-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.37-39
    • /
    • 2000
  • This paper describes the application of Fuzzy Logic Controller (FLC) to Thyristor Controlled Series Capacitor (TCSC) which can have significant impact on Power system dynamics. The function of the FLC is to control the firing angle of the TCSC. We tuned the scaling factors of the FLC using Tabu Search. The proposed FLC is used for damping the low frequency oscillations caused by disturbances such as the sudden changes of small of large loads or the outages in the generators or transmission lines. To evaluate usefulness of the proposed FLC. we performed the computer simulation for single-machine infinite system. The response of FLC is compared with that of PD controller optimized using Tabu Search. Simulation results that the FLC shows the better control performance than PD controller.

  • PDF

INTEGRATED OPTICAL MODEL FOR STRAY LIGHT SUPPRESSION AND END-TO-END PERFORMANCE SIMULATION FOR GOCI

  • Ham, Sun-Jeong;Lee, Jae-Min;Youn, Heong-Sik;Kang, Gm-Sil;Kim, Seong-Hui;Kim, Sug-Whan
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.274-277
    • /
    • 2006
  • KARI is currently developing a geostationary ocean color imager (GOCI) for COMS. We report the progress in integrated optical modeling and analysis for stray light suppression and the end-to-end instrument performance verification including in-orbit calibration. The Sun is modeled as the emitting light source and the selected area around Korean peninsular as the observation target that scatters the sun light towards GOCI in orbit. The optical ray tracing employing active geometric scaling was then used for precise characterization of the spatial and radiometric performance at the instrument focal plane. The analysis results show positive reduction in the simulated stray light level with the design improvement including baffles. It also indicates that the ray traced in-orbit radiometric performances are effective tools for the independent assessment of more traditional linear and quadratic equation based estimation of water leaving radiance. The concept of integrated GOCI optical model and the computational method are presented.

  • PDF

Design of Optimized Multi-Fuzzy Controllers by Hierarchical Fair Competition-based Genetic Algorithms for Air-Conditioning System (에어컨시스템에 대한 계층적 공정 경쟁 유전자 알고리즘을 이용한 최적화된 다중 퍼지제어기 설계)

  • Jung, Seung-Hyun;Choi, Jeoung-Nae;Kim, Hyun-Ki;Oh, Sung-Kwun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.344-351
    • /
    • 2007
  • In this paper, we propose an approach to design multi-fuzzy controllers for the superheat and the low pressure that have an influence on energy efficiency and stabilization of air conditioning system with multi-evaporators. Air conditioning system with multi-evaporators is composed of compressor, condenser, several evaporators and several expansion valves. It is quite difficult to control the air conditioning system because the change of the refrigerant condition give an impact on the overall air conditioning system. In order to solve the drawback, we design multi-fuzzy controllers which control simultaneously both three expansion valve and one compressor for the superheat and the low pressure of air conditioning system. The proposed multi fuzzy controllers are given as a kinds of controller types such as a simplified fuzzy inference type. Here the scaling factors of each fuzzy controller are efficiently adjusted by Hierarchical Fair Competition-based Genetic Algorithms. The values of performance index of the simulation results of the A company type compare with simulation results of simplified inference type.

Cache Simulator Design for Optimizing Write Operations of Nonvolatile Memory Based Caches (비휘발성 메모리 기반 캐시의 쓰기 작업 최적화를 위한 캐시 시뮬레이터 설계)

  • Joo, Yongsoo;Kim, Myeung-Heo;Han, In-Kyu;Lim, Sung-Soo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.2
    • /
    • pp.87-95
    • /
    • 2016
  • Nonvolatile memory (NVM) is being considered as an alternative of traditional memory devices such as SRAM and DRAM, which suffer from various limitations due to the technology scaling of modern integrated circuits. Although NVMs have advantages including nonvolatility, low leakage current, and high density, their inferior write performance in terms of energy and endurance becomes a major challenge to the successful design of NVM-based memory systems. In order to overcome the aforementioned drawback of the NVM, extensive research is required to develop energy- and endurance-aware optimization techniques for NVM-based memory systems. However, researchers have experienced difficulty in finding a suitable simulation tool to prototype and evaluate new NVM optimization schemes because existing simulation tools do not consider the feature of NVM devices. In this article, we introduce a NVM-based cache simulator to support rapid prototyping and evaluation of NVM-based caches, as well as energy- and endurance-aware NVM cache optimization schemes. We demonstrate that the proposed NVM cache simulator can easily prototype PRAM cache and PRAM+STT-RAM hybrid cache as well as evaluate various write traffic reduction schemes and wear leveling schemes.

A Study of Cell Latch-up Effect Analysis in SRAM Device (SRAM소자의 Cell Latch-up 효과에 대한 해석 연구)

  • Lee Hoong-Joo;Lee Jun-Ha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.1
    • /
    • pp.54-57
    • /
    • 2005
  • A soft error rate neutrons is a growing problem fur terrestrial integrated circuits with technology scaling. In the acceleration test with high-density neutron beam, a latch-up prohibits accurate estimations of the soft error rate (SER). This paper presents results of analysis for the latch-up characteristics in the circumstance corresponding to the acceleration SER test for SRAM. Simulation results, using a two-dimensional device simulator, show that the deep p-well structure has better latch-up immunity compared to normal twin and triple well structures. In addition, it is more effective to minimize the distance to ground power compared with controlling a path to the $V_{DD}$ power.

  • PDF