• 제목/요약/키워드: Scaling laws

검색결과 48건 처리시간 0.019초

난류 제트확산화염의 연소소음 특성에 관한 실험연구 (Experimental Study on Combustion Noise Characteristics in Turbulent Jet Diffusion Flames)

  • 김호석;오상헌
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1253-1263
    • /
    • 1994
  • The experimental study is carried out to identify the combustion generated noise mechanism in free turbulent jet diffusion flames. Axial mean fluctuating velocities in cold and reacting flow fields were measured using hot-wire anemometer and LDv.The overall sound pressure level and their spectral distribution in far field with and without combustion were also measured in an anechoic chamber. The axial mean velocity is 10-25% faster and turbulent intensities are about 10 to 15% smaller near active reacting zone than those in nonreacting flow fields. And sound pressure level is about 10-20% higher in reacting flow fields. It is also shown that the spectra of the combustion noise has lower frequency characteristics over a broadband spectrum. These results indicate that the combustion noise characteristics in jet diffusion flames are dominated by energy containing large scale eddies and the combusting flow field itself. Scaling laws correlating the gas velocity and heat of combustion show that the acoustic power of the combustion noise is linearly proportional to the 3.8th power of the mean axial velocity rather than 8th power in nonreacting flow fields, and the SPL increases linearly with logarithmic 1/2th power of the heat of combustion.

Inertial Microfluidics-Based Cell Sorting

  • Kim, Ga-Yeong;Han, Jong-In;Park, Je-Kyun
    • BioChip Journal
    • /
    • 제12권4호
    • /
    • pp.257-267
    • /
    • 2018
  • Inertial microfluidics has attracted significant attention in recent years due to its superior benefits of high throughput, precise control, simplicity, and low cost. Many inertial microfluidic applications have been demonstrated for physiological sample processing, clinical diagnostics, and environmental monitoring and cleanup. In this review, we discuss the fundamental mechanisms and principles of inertial migration and Dean flow, which are the basis of inertial microfluidics, and provide basic scaling laws for designing the inertial microfluidic devices. This will allow end-users with diverse backgrounds to more easily take advantage of the inertial microfluidic technologies in a wide range of applications. A variety of recent applications are also classified according to the structure of the microchannel: straight channels and curved channels. Finally, several future perspectives of employing fluid inertia in microfluidic-based cell sorting are discussed. Inertial microfluidics is still expected to be promising in the near future with more novel designs using various shapes of cross section, sheath flows with different viscosities, or technologies that target micron and submicron bioparticles.

시멘트콘크리트 포장체의 거동연구를 위한 축소모델 배합의 재료적 상사성 (The Similitude of Material for Small-Scale Model Mix Proportion of Concrete Pavement)

  • 고영주;이용우;배주성
    • 콘크리트학회지
    • /
    • 제11권2호
    • /
    • pp.139-145
    • /
    • 1999
  • 본 연구는 시멘트콘크리트 포장체의 거동연구를 위한 축소모형실험에 앞서 모형시험체의 제작에 가장 중요한 변수인 재료적 상사성을 확보하기 위한 방법론을 기술하였다. 현재 고속도로의 콘크리트 포장 배합설계기준과 동일한 배합비로 제작한 시험편과 골재의 최대치수를 축소하고 W/Cm C/a, S/a, 골재종류를 변수로 하여 총 224개의 원형공시체를 제작하여 그들의 응력-변형률 거동을 분석하므로써 재료적 상사성을 만족하는 모형배합비를 도출하였다. 모형콘크리트 배합비로 쇄석은 C/a 31%에서 S/a 28%, 강자갈은 C/a 30%일 때 S/a 27%가 가장 적합한 것으로 나타났다. 이는 실내 모형실험에 의해 콘크리트포장체의 거동연구를 하고자 할때 모형실험에 대한 신뢰성을 향상시키고, 향후 연구의 기초자료를 제공할 수 있으리라 판단된다.

단층 파라미터에 따른 확률론적 지진해일 재해곡선의 민감도 분석 (Sensitivity Analysis According to Fault Parameters for Probabilistic Tsunami Hazard Curves)

  • 조명환;김건형;윤성범
    • 한국해안·해양공학회논문집
    • /
    • 제31권6호
    • /
    • pp.368-378
    • /
    • 2019
  • 확률론적 지진해일 재해도 평가를 위한 로직트리는 지진발생 패턴의 다양성을 고려하기 위해 많은 변수를 고려하여 구성된다. 고려되는 변수가 많아질수록 재해도 평가 결과는 다양한 패턴으로 변화한다. 본 연구에서는 로직트리에 제시되어 있는 다양한 단층 파라미터 변수와 스케일링 규칙이 부산 근해에서의 지진해일 재해도에 미치는 영향을 평가하였다. 로직트리에 제시된 변수 중 주향각, 경사각 및 단층변위분포 변수의 값을 변화시켜가며 지진해일 전파모의를 수행하고, 그 결과를 이용하여 민감도 분석을 수행하였다. 그 결과 주향각 변수가 재해도 평가 결과에 미치는 영향은 예상보다 크지 않은 반면, 초기수면의 공간적 분포에 영향을 줄 수 있는 경사각과 단층변위분포의 영향이 크게 나타났다. 이는 주향각보다는 초기수면의 형상을 결정하는 경사각과 단층변위의 공간분포가 동해 지진해일의 재해도 평가에서 중요인자임을 보여준다.

A numerical study of a confined turbulent wall jet with an external stream

  • Yan, Zhitao;Zhong, Yongli;Cheng, Xu;McIntyre, Rory P.;Savory, Eric
    • Wind and Structures
    • /
    • 제27권2호
    • /
    • pp.101-109
    • /
    • 2018
  • Wall jet flow exists widely in engineering applications, including the simulation of thunderstorm downburst outflows, and has been investigated extensively by both experimental and numerical methods. Most previous studies focused on the scaling laws and self-similarity, while the effect of lip thickness and external stream height on mean velocity has not been examined in detail. The present work is a numerical study, using steady Reynolds-Averaged Navier Stokes (RANS) simulations at a Reynolds number of $3.5{\times}10^4$, of a turbulent plane wall jet with an external stream to investigate the influence of the wall jet domain on downstream development of the flow. The comparisons of flow characteristics simulated by the Reynolds stress turbulence model closure (Stress-omega, SWRSM) and experimental results indicate that this model may be considered reasonable for simulating the wall jet. The confined wall jet is further analyzed in a parametric study, with the results compared to the experimental data. The results indicate that the height and the width of the wind tunnel and the lip thickness of the jet nozzle have a great effect on the wall jet development. The top plate of the tunnel does not confine the development of the wall jet within 200b of the nozzle when the height of the tunnel is more than 40b (b is the height of jet nozzle). The features of the centerline flow in the mid plane of the 3D numerical model are close to those of the 2D simulated plane wall jet when the width of the tunnel is more than 20b.

일정 전위 모드에서의 전기와류 불안정성에 대한 시간-분해 해석 (Time-resolved Analysis for Electroconvective Instability under Potentiostatic Mode)

  • 이효민
    • Korean Chemical Engineering Research
    • /
    • 제58권2호
    • /
    • pp.319-324
    • /
    • 2020
  • 전기와류 불안정성은 전기투석 장치, 갈바니 전지, 전해 전지 등의 이온-선택성 이동 현상계에서 발견되는 비선형 이동 현상이다. 이 불안정성은 이온-선택성 표면 근처 공간 전하층의 요동에 의해 발생하며, 불안정성의 발현은 물질 전달 속도를 증가시켜 준다. 따라서 전기와류 불안정성은 물질 전달 측면에서 중요한 의미를 가진다. 최근의 실험적 기법들이 불안정성의 직접적 가시화를 가능하게 해주었으나, 실험적 한계점에 의해 불안정성의 원론적 연구는 제한된 영역에서만 이루어지고 있다. 본 연구에서는 일정 전위 모드에서의 전기와류 불안정성에 대한 수치 해석을 진행하여 전류-시간 곡선과 불안정성의 거동 간의 상관관계를 밝히고자 하였다. 시간-분해 해석을 통하여, 불안정성의 발달 거동을 SCL 형성 - 전기와류 불안정성의 성장 - 정상 상태 도달로 구분 지었다. 더불어, 인가 전위에 따른 전이 시간들의 크기 법칙 또한 수치적으로 유도하였다.

On validation of fully coupled behavior of porous media using centrifuge test results

  • Tasiopoulou, Panagiota;Taiebat, Mahdi;Tafazzoli, Nima;Jeremic, Boris
    • Coupled systems mechanics
    • /
    • 제4권1호
    • /
    • pp.37-65
    • /
    • 2015
  • Modeling and simulation of mechanical response of infrastructure object, solids and structures, relies on the use of computational models to foretell the state of a physical system under conditions for which such computational model has not been validated. Verification and Validation (V&V) procedures are the primary means of assessing accuracy, building confidence and credibility in modeling and computational simulations of behavior of those infrastructure objects. Validation is the process of determining a degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model. It is mainly a physics issue and provides evidence that the correct model is solved (Oberkampf et al. 2002). Our primary interest is in modeling and simulating behavior of porous particulate media that is fully saturated with pore fluid, including cyclic mobility and liquefaction. Fully saturated soils undergoing dynamic shaking fall in this category. Verification modeling and simulation of fully saturated porous soils is addressed in more detail by (Tasiopoulou et al. 2014), and in this paper we address validation. A set of centrifuge experiments is used for this purpose. Discussion is provided assessing the effects of scaling laws on centrifuge experiments and their influence on the validation. Available validation test are reviewed in view of first and second order phenomena and their importance to validation. For example, dynamics behavior of the system, following the dynamic time, and dissipation of the pore fluid pressures, following diffusion time, are not happening in the same time scale and those discrepancies are discussed. Laboratory tests, performed on soil that is used in centrifuge experiments, were used to calibrate material models that are then used in a validation process. Number of physical and numerical examples are used for validation and to illustrate presented discussion. In particular, it is shown that for the most part, numerical prediction of behavior, using laboratory test data to calibrate soil material model, prior to centrifuge experiments, can be validated using scaled tests. There are, of course, discrepancies, sources of which are analyzed and discussed.

Flow-induced pressure fluctuations of a moderate Reynolds number jet interacting with a tangential flat plate

  • Marco, Alessandro Di;Mancinelli, Matteo;Camussi, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • 제3권3호
    • /
    • pp.243-257
    • /
    • 2016
  • The increase of air traffic volume has brought an increasing amount of issues related to carbon and NOx emissions and noise pollution. Aircraft manufacturers are concentrating their efforts to develop technologies to increase aircraft efficiency and consequently to reduce pollutant discharge and noise emission. Ultra High By-Pass Ratio engine concepts provide reduction of fuel consumption and noise emission thanks to a decrease of the jet velocity exhausting from the engine nozzles. In order to keep same thrust, mass flow and therefore section of fan/nacelle diameter should be increased to compensate velocity reduction. Such feature will lead to close-coupled architectures for engine installation under the wing. A strong jet-wing interaction resulting in a change of turbulent mixing in the aeroacoustic field as well as noise enhancement due to reflection phenomena are therefore expected. On the other hand, pressure fluctuations on the wing as well as on the fuselage represent the forcing loads, which stress panels causing vibrations. Some of these vibrations are re-emitted in the aeroacoustic field as vibration noise, some of them are transmitted in the cockpit as interior noise. In the present work, the interaction between a jet and wing or fuselage is reproduced by a flat surface tangential to an incompressible jet at different radial distances from the nozzle axis. The change in the aerodynamic field due to the presence of the rigid plate was studied by hot wire anemometric measurements, which provided a characterization of mean and fluctuating velocity fields in the jet plume. Pressure fluctuations acting on the flat plate were studied by cavity-mounted microphones which provided point-wise measurements in stream-wise and spanwise directions. Statistical description of velocity and wall pressure fields are determined in terms of Fourier-domain quantities. Scaling laws for pressure auto-spectra and coherence functions are also presented.