• Title/Summary/Keyword: Scaled bogie

Search Result 18, Processing Time 0.023 seconds

A Study on the Wheelset Behavior on the Roller Rig for Railway Bogie Testing (대차 주행시험대상에서의 윤축 거동에 대한 연구)

  • Hur, Hyun-Moo;Park, Joon-Hyuk;You, Won-Hee;Park, Tae-Won
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1207-1212
    • /
    • 2007
  • The critical speed of railway bogie related to the stability of the railway rolling-stock is important. Testing of the dynamic performance of bogie is conducted using a roller rig in a laboratory in place of field testing on track. This roller rig is composed of two rollers equivalent to track and used to test the dynamic characteristics of vehicle. But, the geometrical characteristics of the wheel/roller contact on the roller rig are different from those of the wheel/rail contact because the longitudinal radius of roller is not infinite compared with rail. This difference has influence on the wheelset behavior and the critical speed of bogie. Therefore in this paper, we have studied the behavior of wheelset and bogie on the roller rig for railway bogie testing with the purpose of developing the scaled roller rig. As an analysis results, it has been shown that the critical speed of bogie on the roller rig is slightly lower than that of bogie on track.

  • PDF

Preliminary design of a scaled railway vehicle simulator (상사기법을 이용한 차량시뮬레이터 기초 설계)

  • Kim, Hong-Chan;Kim, Jeung-Tae;Lee, Hi-Sung;Oh, Se-Been
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.951-956
    • /
    • 2008
  • The study is to develop a foundation design for a railway vehicle simulator using a scaled model. Although a scaled simulator is limited to manipulate the dynamics of a full-size railway vehicle, it has been known to have an advantage, since a scaled model could provide the fundamental dynamic behavior within a limited space of a laboratory facility and with a low operation cost while an experiment is conducted. This study is to propose a design strategy for a simulator so that a small scaled roller rig could be fabricated in a laboratory based on the design philosophy. The data obtained from the scale model is also experimentally investigated in conjunction with appropriate non-dimensional analysis so that the output results should be interpreted to the railway vehicle.

  • PDF

Preliminary Design and Development Framework of Railway Vehicle Simulator for Engineering Evaluation Analysis

  • Kim, Hong-Chan;Kim, Jeung-Tae
    • International Journal of Railway
    • /
    • v.4 no.1
    • /
    • pp.5-11
    • /
    • 2011
  • The purpose of the present study is to develop conceptual design of a railway vehicle simulator based on a scaled model. Although the scaled simulator is limited in its ability to manipulate the full dynamics of a full-size railway vehicle, it has been known to have an advantage in that it could provide means of testing the fundamental dynamic behavior within a limited laboratory space and at low operation cost. The present study proposes a design strategy for a simulator so that a small scaled roller rig could be fabricated and operated in laboratory setting based on the design philosophy. The data obtained from experimental testing using a scale model can be used to verify and interpret the dynamic performance of full-scale railway vehicle by applying appropriate non-dimensional analysis.

Analysis of the Vibration Characteristics of a High-Speed Train using a Scale Model (축소모델을 통한 고속철도 차량의 진동특성 해석 및 검증)

  • Han, Jae Hyun;Kim, Tae Min;Kim, Jeung Tae
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.1
    • /
    • pp.7-13
    • /
    • 2013
  • A scaled version of a roller rig is developed to demonstrate the dynamic characteristics of a railway vehicle for academic purposes. This rig is designed based on Jaschinski's similarity law. It is scaled to 1/10 of actual size and allows 9-DOF motion to examine the up and down vibration of a train set. The test rig consists of three sub-hardware components: (i) a driving roller mechanism with a three-phase AC motor and an inverter, (ii) a bogie structure with first and second suspensions, and (iii) the vehicle body. The motor of the rig is capable of 3,600rpm, allowing the test to simulate a vehicle up to a maximum speed of 400Km/hr. Because bearings and joints are properly connected to the sub-structures, various motion analyses, such as a lateral, pitching, and yawing motion, are allowed. The slip motion between the rail and the wheel set is also monitored by several sensors mounted in the rig. After the construction of the hardware, an experiment is conducted to obtain the natural frequencies of the dynamic behavior of the specimen. First, the test rig is run and data are collected from six sets of accelerometers. Then, a numerical analysis of the model based on the ADAMS program is derived. Finally, the measurement data of the first three fundamental frequencies are compared to the analytical result and the validation of the test rig is conducted. The results show that the developed roller rig provides good accuracy in simulating the dynamic behavior of the vehicle motion. Although the roller rig designed in this paper is intended for academia, it can easily be implemented as part of a dynamic experiment of a bogie and a vehicle body for a high-speed train as part of the research efforts in this area.

Construction of the Obstacle Detection Systems for a Scaled Steering Bogie (축소 조향대차의 장애물 검지시스템 구축)

  • Kim, Minl-Soo;Hur, Hyun-Moo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1757_1758
    • /
    • 2009
  • 본 논문에서는 철도차량의 능동조향시스템 연구를 위한 축소 조향대차의 장애물 검지시스템 구축에 대여 연구하였다. 철도차량에서 능동조향이란 곡선부 주행 시 차륜/레일 접촉에 의한 승차감 저하 및 차륜/레일의 마모와 소음을 줄이고, 고속주행을 위한 조향성능 및 주행안정성을 확보하기 위한 휠셋의 제어기술이다. 따라서 논문에서는 조향제어전략 및 제어기법을 연구하기 위한 축소 차량모델(견인대차와 조향대차로 구성)의 개발과정으로서 자동운전을 위한 장애물 검지시스템에 대한 연구를 수행하였으며 주행실험을 통해 그 성능을 검증하였다.

  • PDF

A Study on Safety Evaluation of Wheel Using Roller Rig Tester (주행시험기를 이용한 차륜의 안전성 평가에 관한 연구)

  • Ham, Young Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.7
    • /
    • pp.591-595
    • /
    • 2015
  • The roller rig tester for safety performance evaluation of wheel derailment is a test facility which can give the test load condition to the test wheel, similar to the actual dynamic condition in actual running condition. This study describes the evaluation result on the durability of the resilient wheel equipped with the ring damper and the damping material, and installed in the half part of a full scaled bogie in combination with the primary spring when it rotates under the dynamic condition. The evaluation result on durability of resilient wheel after load test of 2 million cycles shows that the safety of wheel is not affected by the applied load in visual inspection and nondestructive test, however, in the bolt used for fastening the ring damper to the wheel the loosening was found. Accordingly the use of self-locking nut and washer is recommended.

Measurement of Aerodynamic Loads on Railway Vehicles Under Crosswind (측풍 시 철도차량에 가해지는 공기역학적 하중의 측정)

  • Kwon, Hyeok-Bin;You, Won-Hee;Cho, Tae-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.91-98
    • /
    • 2011
  • In this study, we measure the aerodynamic forces acting on an AREX train in a crosswind by wind tunnel testing. A detailed test model scaled to 5% of the original and including the inter-car, under-body, and the bogie systems was developed. The aerodynamic forces on the train vehicles have been measured in a 4 m $\times$ 3 m test section of the subsonic wind tunnel located in Korea Aerospace Research Institute (KARI). The aerodynamic forces and moments of the train model on two different track models have been plotted for various yaw angles, and the characteristics of the aerodynamic coefficients have been analyzed at the experimental conditions.

H Control of Secondary Suspension in Railway Vehicles Equipped with a MR Damper (MR 댐퍼가 적용된 철도차량 이차현가장치의 H 제어)

  • Shin, Yu Jeong;You, Won Hee;Hur, Hyun Moo;Park, Joon Hyuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.10
    • /
    • pp.1051-1059
    • /
    • 2013
  • In general, lateral ride comfort of railway vehicle is mainly influenced by a secondary suspension placed between the bogie and carbody. Higher operating speeds of train results in increased vibration of carbody, which has a negative impact related to the ride comfort. To solve this problem, researches to replace the conventional passive suspension with (semi)active technology in the secondary suspension of a railway vehicle have been carried out. The semi-active suspension using the magneto-rheological damper is relatively simpler system and has advantage in maintenance compared to the hydraulic type semi-active damper. This study was performed to reduce lateral vibration acceleration of carbody related to ride comfort of railway vehicles with a semi-active suspension system. The numerical analysis was conducted by replacing passive lateral damper with semi-active MR damper, and robust control with the MR damper was applied to the 1/5 scaled railway vehicle model.