• 제목/요약/키워드: Scale-dependent modeling

검색결과 67건 처리시간 0.024초

Free vibration analysis of a three-layered microbeam based on strain gradient theory and three-unknown shear and normal deformation theory

  • Arefi, Mohammad;Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • 제26권4호
    • /
    • pp.421-437
    • /
    • 2018
  • Free vibration analysis of a three-layered microbeam including an elastic micro-core and two piezo-magnetic face-sheets resting on Pasternak's foundation are studied in this paper. Strain gradient theory is used for size-dependent modeling of microbeam. In addition, three-unknown shear and normal deformations theory is employed for description of displacement field. Hamilton's principle is used for derivation of the governing equations of motion in electro-magneto-mechanical loads. Three micro-length-scale parameters based on strain gradient theory are employed for prediction of vibrational characteristics of structure in micro-scale. The results show that increase of three micro-length-scale parameters leads to significant increase of three natural frequencies especially for increase of second micro-length-scale parameter. This result is according to this fact that stiffness of a micro-scale structure is increased with increase of micro-length-scale parameters.

Displacement prediction of precast concrete under vibration using artificial neural networks

  • Aktas, Gultekin;Ozerdem, Mehmet Sirac
    • Structural Engineering and Mechanics
    • /
    • 제74권4호
    • /
    • pp.559-565
    • /
    • 2020
  • This paper intends to progress models to accurately estimate the behavior of fresh concrete under vibration using artificial neural networks (ANNs). To this end, behavior of a full scale precast concrete mold was investigated numerically. Experimental study was carried out under vibration with the use of a computer-based data acquisition system. In this study measurements were taken at three points using two vibrators. Transducers were used to measure time-dependent lateral displacements at these points on mold while both mold is empty and full of fresh concrete. Modeling of empty and full mold was made using ANNs. Benefiting ANNs used in this study for modeling fresh concrete, mold design can be performed. For the modeling of ANNs: Experimental data were divided randomly into two parts such as training set and testing set. Training set was used for ANN's learning stage. And the remaining part was used for testing the ANNs. Finally, ANN modeling was compared with measured data. The comparisons show that the experimental data and ANN results are compatible.

Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Nia, Alireza Farrokhi;Badnava, Salman;Hamouda, A.M.S.
    • Advances in nano research
    • /
    • 제8권2호
    • /
    • pp.149-156
    • /
    • 2020
  • The present paper explores forced vibrational properties of porosity-dependent functionally graded (FG) cylindrical nanoshells exposed to linear-type or triangular-type impulse load via classical shell theory (CST) and nonlocal strain gradient theory (NSGT). Employing such scale-dependent theory, two scale factors accounting for stiffness softening and hardening effects are incorporated in modeling of the nanoshell. Two sorts of porosity distributions called even and uneven have been taken into account. Governing equations obtained for porous nanoshell have been solved through inverse Laplace transforms technique to derive dynamical deflections. It is shown that transient responses of a nanoshell are affected by the form and position of impulse loading, amount of porosities, porosities dispensation, nonlocal and strain gradient factors.

Flexoelectric effects on dynamic response characteristics of nonlocal piezoelectric material beam

  • Kunbar, Laith A. Hassan;Alkadhimi, Basim Mohamed;Radhi, Hussein Sultan;Faleh, Nadhim M.
    • Advances in materials Research
    • /
    • 제8권4호
    • /
    • pp.259-274
    • /
    • 2019
  • Flexoelectric effect has a major role on mechanical responses of piezoelectric materials when their dimensions become submicron. Applying differential quadrature (DQ) method, the present article studies dynamic characteristics of a small scale beam made of piezoelectric material considering flexoelectric effect. In order to capture scale-dependency of such piezoelectric beams, nonlocal elasticity theory is utilized and also surface effects are included for better structural modeling. Governing equations have been derived by utilizing Hamilton's rule with the assumption that the scale-dependent beam is subjected to thermal environment leading to uniform temperature variation across the thickness. Obtained results based on DQ method are in good agreement with previous data on pizo-flexoelectric beams. Finally, it would be indicated that dynamic response characteristics and vibration frequencies of the nano-size beam depends on the existence of flexoelectric influence and the magnitude of scale factors.

입자 크기의 함수로 나타낸 대기 중 블랙카본의 변성시간척도 (Particle-size-dependent aging time scale of atmospheric black carbon)

  • 박성훈
    • 한국입자에어로졸학회지
    • /
    • 제5권2호
    • /
    • pp.45-52
    • /
    • 2009
  • Black carbon, which is a by-product of combustion of fossil fuel and biomass burning, is the component that imposes the largest uncertainty on quantifying aerosol climate effect. The direct, indirect and semi-direct climate effects of black carbon depend on its state of the mixing with other water-soluble aerosol components. The process that transforms hydrophobic externally mixed black carbon particles into hygroscopic internally mixed ones is called "aging". In most climate models, simple parameterizations for the aging time scale are used instead of solving detailed dynamics equations on the aging process due to the computation cost. In this study, a new parameterization for the black carbon aging time scale due to condensation and coagulation is presented as a function of the concentration of hygroscopic atmospheric components and the black carbon particle size. It is shown that the black carbon aging time scale due to condensation of sulfuric acid vapors varies to a large extent depending on the sulfuric acid concentration and the black carbon particle size. This result indicates that the constant aging time scale values suggested in the literature cannot be directly applied to a global scale modeling. The aging time scale due to coagulation with internally mixed aerosol particles shows an even stronger dependency on particle size, which implies that the use of a particle-size-independent aging time scale may lead to a large error when the aging is dominated by coagulation.

  • PDF

Nano-Scale MOSFET의 게이트길이 종속 차단주파수 추출 (Gate-Length Dependent Cutoff Frequency Extraction for Nano-Scale MOSFET)

  • 김종혁;이용택;최문성;구자남;이성현
    • 대한전자공학회논문지SD
    • /
    • 제42권12호
    • /
    • pp.1-8
    • /
    • 2005
  • 본 연구에서는 측정된 S-파라미터로부터 추출된 Nano-scale MOSFET 등가회로 파라미터의 scaling 방정식을 사용하여 차단주파수의 게이트 길이 종속성을 모델화하였다. 모델된 차단주파수는 게이트 길이가 줄어듬에 따라서 크게 증가하다가, 점점 증가율이 크게 감소하는 경향을 보였다. 이는 게이트 길이가 감소함에 따라 내부전달시간은 크게 줄어들지만, 외부 기생 충전시간은 상대적으로 조금씩 감소하기 때문이다. 이와 같은 새로운 게이트길이 종속 모델은 Nano-scale MOSFET의 RF성능을 최적화시키는 데 큰 도움이 될 것이다.

Prediction of behavior of fresh concrete exposed to vibration using artificial neural networks and regression model

  • Aktas, Gultekin;Ozerdem, Mehmet Sirac
    • Structural Engineering and Mechanics
    • /
    • 제60권4호
    • /
    • pp.655-665
    • /
    • 2016
  • This paper aims to develop models to accurately predict the behavior of fresh concrete exposed to vibration using artificial neural networks (ANNs) model and regression model (RM). For this purpose, behavior of a full scale precast concrete mold was investigated experimentally and numerically. Experiment was performed under vibration with the use of a computer-based data acquisition system. Transducers were used to measure time-dependent lateral displacements at some points on mold while both mold is empty and full of fresh concrete. Modeling of empty and full mold was made using both ANNs and RM. For the modeling of ANNs: Experimental data were divided randomly into two parts. One of them was used for training of the ANNs and the remaining part was used for testing the ANNs. For the modeling of RM: Sinusoidal regression model equation was determined and the predicted data was compared with measured data. Finally, both models were compared with each other. The comparisons of both models show that the measured and testing results are compatible. Regression analysis is a traditional method that can be used for modeling with simple methods. However, this study also showed that ANN modeling can be used as an alternative method for behavior of fresh concrete exposed to vibration in precast concrete structures.

기하적 필수 전위에 의한 길이효과를 고려한 입자 강화 알루미늄 복합재의 강도해석 (Strength Analysis of Particle-Reinforced Aluminum Composites with Length-Scale Effect based on Geometrically Necessary Dislocations)

  • 서영성;김용배;이장규
    • 소성∙가공
    • /
    • 제18권6호
    • /
    • pp.482-487
    • /
    • 2009
  • A finite element based microstructural modeling for the size dependent strengthening of particle reinforced aluminum composites is presented. The model accounts explicitly for the enhanced strength in a discretely defined "punched zone" around the particle in an aluminum matrix composite as a result of geometrically necessary dislocations developed through a CTE mismatch. The density of geometrically necessary dislocations is calculated considering volume fraction of the particle. Results show that predicted flow stresses with different particle size are in good agreement with experiments. It is also shown that 0.2% offset yield stresses increases with smaller particles and larger volume fractions and this length-scale effect on the enhanced strength can be observed by explicitly including GND region around the particle. The strengths predicted with the inclusion of volume fraction in the density equation are slightly lower than those without.

A study on the dynamic instabilities of a smart embedded micro-shell induced by a pulsating flow: A nonlocal piezoelastic approach

  • Atabakhshian, Vahid;Shooshtaria, Alireza
    • Advances in nano research
    • /
    • 제9권3호
    • /
    • pp.133-145
    • /
    • 2020
  • In this study, nonlinear vibrations and dynamic instabilities of a smart embedded micro shell conveying varied fluid flow and subjected to the combined electro-thermo-mechanical loadings are investigated. With the aim of designing new hydraulic sensors and actuators, the piezoelectric materials are employed for the body and the effects of applying electric field on the stability of the system as well as the induced voltage due to the dynamic behavior of the system are studied. The nonlocal piezoelasticity theory and the nonlinear cylindrical shell model in conjunction with the energy approach are utilized to mathematically modeling of the structure. The fluid flow is assumed to be isentropic, incompressible and fully develop, and for more generality of the problem both steady and time dependent flow regimes are considered. The mathematical modeling of fluid flow is also carried out based on a scalar potential function, time mean Navier-Stokes equations and the theory of slip boundary condition. Employing the modified Lagrange equations for open systems, the nonlinear coupled governing equations of motion are achieved and solved via the state space problem; forth order numerical integration and Bolotin's method. In the numerical results, a comprehensive discussion is made on the dynamical instabilities of the system (such as divergence, flutter and parametric resonance). We found that applying positive electric potential field will improve the stability of the system as an actuator or vibration amplitude controller in the micro electro mechanical systems.

공압제진대용 이중챔버형 공압스프링의 복소강성 모형화 (Amplitude-dependent Complex Stiffness Modeling of Dual-chamber Pneumatic Spring for Pneumatic Vibration Isolation Table)

  • 이정훈;김광준
    • 한국소음진동공학회논문집
    • /
    • 제18권1호
    • /
    • pp.110-122
    • /
    • 2008
  • Pneumatic vibration isolator typically consisting of dual-chamber pneumatic springs and a rigid table are widely employed for proper operation of precision instruments such as optical devices or nano-scale equipments owing to their low stiffness- and high damping-characteristics. As environmental vibration regulations for precision instruments become more stringent, it is required to improve further the isolation performance. In order to facilitate their design optimization or active control, a more accurate mathematical model or complex stiffness is needed. Experimental results we obtained rigorously for a dual-chamber pneumatic spring exhibit significantly amplitude dependent behavior, which cannot be described by linear models in earlier researches. In this paper, an improvement for the complex stiffness model is presented by taking two major considerations. One is to consider the amplitude dependent complex stiffness of diaphragm necessarily employed for prevention of air leakage. The other is to employ a nonlinear model for the air flow in capillary tube connecting the two pneumatic chambers. The proposed amplitude-dependent complex stiffness model which reflects dependency on both frequency and excitation amplitude is shown to be very valid by comparison with the experimental measurements. Such an accurate nonlinear model for the dual-chamber pneumatic springs would contribute to more effective design or control of vibration isolation systems.