• Title/Summary/Keyword: Scaffold defect

Search Result 60, Processing Time 0.038 seconds

Development of an experimental model for radiation-induced inhibition of cranial bone regeneration

  • Jung, Hong-Moon;Lee, Jeong-Eun;Lee, Seoung-Jun;Lee, Jung-Tae;Kwon, Tae-Yub;Kwon, Tae-Geon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.40
    • /
    • pp.34.1-34.8
    • /
    • 2018
  • Background: Radiation therapy is widely employed in the treatment of head and neck cancer. Adverse effects of therapeutic irradiation include delayed bone healing after dental extraction or impaired bone regeneration at the irradiated bony defect. Development of a reliable experimental model may be beneficial to study tissue regeneration in the irradiated field. The current study aimed to develop a relevant animal model of post-radiation cranial bone defect. Methods: A lead shielding block was designed for selective external irradiation of the mouse calvaria. Critical-size calvarial defect was created 2 weeks after the irradiation. The defect was filled with a collagen scaffold, with or without incorporation of bone morphogenetic protein 2 (BMP-2) (1 ㎍/ml). The non-irradiated mice treated with or without BMP-2-included scaffold served as control. Four weeks after the surgery, the specimens were harvested and the degree of bone formation was evaluated by histological and radiographical examinations. Results: BMP-2-treated scaffold yielded significant bone regeneration in the mice calvarial defects. However, a single fraction of external irradiation was observed to eliminate the bone regeneration capacity of the BMP-2-incorporated scaffold without influencing the survival of the animals. Conclusion: The current study established an efficient model for post-radiation cranial bone regeneration and can be applied for evaluating the robust bone formation system using various chemokines or agents in unfavorable, demanding radiation-related bone defect models.

Growth and Osteoblastic Differentiation of Mesenchymal Stem Cells on Silk Scaffolds

  • Cho, Hee-Yeon;Baik, Young-Ae;Jeon, Suyeon;Kwak, Yoon-Hae;Kweon, Hae Yong;Jo, You Young;Lee, Kwang Gill;Park, Young Hwan;Kang, Dongchul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.27 no.2
    • /
    • pp.303-311
    • /
    • 2013
  • In this study, we compared the efficiency of osteoblast differentiation media (ODM) containing three distinct reagent combinations in osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) in monolayer culture. In addition, we analyzed growth and differentiation of hBMSCs on silk scaffolds and examined the bone-forming activity of a nanofibrous silk scaffold in a tibia diaphysis defect model of a rat hind limb with intramedullary nailing. Although all three ODM increased alkaline phosphatase activity to a comparable extent, the ODM containing bone morphogenetic protein-2 (BMP-2) was found to be significantly less effective in promoting mineral deposition than the others. Growth of hBMSCs on sponge-form silk scaffolds was faster than on nanofibrous ones, while osteoblastic differentiation was apparent in the cells grown on either type of scaffold. By contrast, bone formation was observed only at the edge of the nanofibrous scaffold implanted in the tibia diaphysis defect, suggesting that use of the silk scaffold alone is not sufficient for the reconstitution of the long bone defect. Since silk scaffolds can support cell growth and differentiation in vitro, loading MSCs on scaffolds might be necessary to improve the bone-forming activity of the scaffold in the long bone defect model.

In vivo Osteogenesis of Cultured Human Periosteal-derived Cells and Polydioxanone/Pluronic F127 Scaffold (인간 골막기원세포와 Polydioxanone/Pluronic F127 담체를 이용한 골형성)

  • Park, Bong-Wook;Lee, Jin-Ho;Oh, Se-Heang;Kim, Sang-June;Hah, Young-Sool;Jeon, Ryoung-Hoon;Maeng, Geun-Ho;Rho, Gyu-Jin;Kim, Jong-Ryoul;Byun, June-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.6
    • /
    • pp.384-390
    • /
    • 2012
  • Purpose: The purpose of this study is to examine in vivo osteogenesis of cultured human periosteal-derived cells and polydioxanone/pluronic F127 scaffold. Methods: Two one-year-old miniature pigs were used in this study. $2{\times}10^6$ periosteal-derived cells in 1 mL medium were seeded by dropping the cell suspension into the polydioxanone/pluronic F127 scaffold. These cell-scaffold constructs were cultured in osteogenic Dulbecco's modified Eagle's medium for 7 days. Under general anesthesia with azaperone and tiletamine-zolazepam, the mandibular body and ramus of the pigs were exposed. Three bony defects were created. Polydioxanone/pluronic F127 scaffold with periosteal-derived cells and the scaffold only were implanted into each defect. Another defect was left empty. Twelve weeks after implantation, the animals were sacrificed. Results: New bone formation was clearly observed in the polydioxanone/pluronic F127 scaffold with periosteal-derived cells. Newly generated bone was also observed in the scaffold without periosteal-derived osteoblasts and empty defect, but was mostly limited to the periphery. Conclusion: These results suggest that cultured human periosteal-derived cells have good osteogenic capacity in a polydioxanone/pluronic F127 scaffold, which provides a proper environment for the osteoblastic differentiation of these cells.

The Effect of Silk Fibroin/Nano-hydroxyapatite/Corn Starch Composite Porous Scaffold on Bone Regeneration in the Rabbit Calvarial Defect Model (가토 두개골 결손 모델에서 실크단백과 나노하이드록시아파타이트, 옥수수 녹말 복합물을 이용한 골 이식재 개발)

  • Park, Yong-Tae;Kwon, Kwang-Jun;Park, Young-Wook;Kim, Seong-Gon;Kim, Chan-Woo;Jo, You-Young;Kweon, Hae-Yong;Kang, Seok-Woo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.6
    • /
    • pp.459-466
    • /
    • 2011
  • Purpose: This study evaluated the capability of bone formation with silk fibroin/nano-hydroxyapatite/corn starch composite scaffold as a bone defect replacement matrix when grafted in a calvarial bone defect of rabbits $in$ $vivo$. Methods: Ten New Zealand white rabbits were used for this study and bilateral round-shaped defects were formed in the parietal bone (diameter: 8.0 mm). The silk fibroin 10% nano-hydroxyapatite/30% corn starch/60% composite scaffold was grafted into the right parietal bone (experimental group). The left side (control group) was grafted with a nano-hydroxyapatite (30%)/corn starch (70%) scaffold. The animals were sacrificed at 4 weeks and 8 weeks. A micro-computerized tomography (${\mu}CT$) of each specimen was taken. Subsequently, the specimens were decalcified and stained with Masson's trichrome for histological and histomorphometric analysis. Results: The average ${\mu}CT$ and histomorphometric measures of bone formation were higher in the control group than in the experimental group at 4 weeks and 8 weeks after surgery though not statistically significant ($P$ >0.05). Conclusion: The rabbit calvarial defect was not successfully repaired by silk fibroin/nano-hydroxyapatite/corn starch composite scaffold and may have been due to an inflammatory reaction caused by silk powder. In the future, the development of composite bone graft material based on various components should be performed with caution.

Fabrication of Blended PCL/β-TCP Scaffolds by Mixture Ratio of β-TCP using Polymer Deposition System (폴리머 적층 시스템을 이용한 β-TCP 혼합 비율에 따른 PCL/β-TCP 인공지지체의 제작)

  • Ha, Seong-Woo;Kim, Jong Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.791-797
    • /
    • 2014
  • Abstract Scaffold used as a carrier of the cell has been actively conducted using plenty of technology in tissue engineering. ${\beta}$-tricalcium phosphate (${\beta}$-TCP) material has shown good biocompatibility and osteoconductive ability when it was implanted as a bone graft substitute in osseous defect in human and animal studies for bone regeneration. In this study, we fabricated the blended polycaprolactone (PCL) and ${\beta}$-TCP scaffold by the polymer deposition system (PDS). The PCL/${\beta}$-TCP scaffold was fabricated at a temperature of $110^{\circ}C$, pressure of 650 kPa, and scan velocity of 100 mm/sec. The Overall geometry and size of the scaffold were fixed circle type with a diameter of 10 mm and a height of 4 mm. PCL/${\beta}$-TCP scaffold was observed by scanning electron microscopy. Cell attachment and proliferation of the scaffold containing 30 wt% ${\beta}$-TCP was superior to those containing 10 wt% and 20 wt% ${\beta}$-TCP.

Development of bone scaffold using HA(Hydroxyapatite) nano powder (HA(Hydroxyapatite) 나노 입자를 이용한 bone scaffold의 개발)

  • Kim J.Y.;Lee S.J.;Lee J.W.;Kim Shin-Yoon;Cho D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.159-160
    • /
    • 2006
  • A novel approach to the manufacture of biocompatible ceramic scaffold for tissue engineering using micro-stereolithography system is introduced. Micro-stereolithography is a newly proposed technology that enables to make a 3D micro structure. The 3D micro structures made by this technology can have accurate and complex shape within a few micron error. Therefore, the application based on this technology can vary greatly in nano-bio fields. Recently, tissue-engineering techniques have been regarded as alternative candidate to treat patients with serious bone defects. So many techniques to design and fabricate 3D scaffolds have been developed. But the imperfection of scaffold such as random pore size and porosity causes a limitation in developing optimum scaffold. So scaffold development with controllable pore size and fully interconnected shape have been needed for a more progress in tissue engineering. In this paper, bone scaffold was developed by applying the micro-stereolithography to the mold technology. The scaffold material used was HA(Hydroxyapatite) nano powder. HA is a type of calcium phosphate ceramic with similar characteristic to human inorganic bone component. The bone scaffold made by HA is expected, in the near future, to be an efficient therapy for bone defect.

  • PDF

In Vitro and In Vivo Evaluation of Composite Scaffold of BCP, Bioglass and Gelatin for Bone Tissue Engineering

  • Kim, Woo Seok;Nath, Subrata Deb;Bae, Jun Sang;Padalhin, Andrew;Kim, Boram;Song, Myeong Jin;Min, Young Ki
    • Korean Journal of Materials Research
    • /
    • v.24 no.6
    • /
    • pp.310-318
    • /
    • 2014
  • In this experiment, a highly porous scaffold of biphasic calcium phosphate (BCP) was prepared using the spongereplica method. The BCP scaffold was coated with 58S bioactive glass (BG) and sintered for a second time. The resulting scaffold was coated with gelatin (Gel) and cross-linked with [3-(3-dimethyl aminopropyl) carbodiimide] and N-Hydroxysuccinamide (EDC-NHS). The initial average pore size of the scaffold ranged from 300 to $700{\mu}m$, with more than 85 % porosity. The coating of BG and Gel had a significant effect on the scaffold-pore size, decreasing scaffold porosity while increasing mechanical strength. The material and surface properties were evaluated by means of several experiments involving scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and X-ray diffraction (XRD). Cytotoxicity was evaluated using MTT assay and confocal imaging of MC3T3-E1 pre-osteoblast cells cultured in vitro. Three types of scaffold (BCP, BCP-BG and BCP-BG-Gel) were implanted in a rat skull for in vivo evaluation. After 8 weeks of implantation, bone regeneration occurred in all three types of sample. Interestingly, regeneration was found to be greater (geometrically and physiologically) for neat BCP scaffolds than for two other kinds of composite scaffolds. However, the other two types of scaffolds were still better than the control (i.e., defect without treatment).

BONE REGENERATION WITH INJECTABLE MPEG-PCL DIBLOCK COPOLYMER AND BONE MARROW MESENCHYMAL STEM CELL (골수 줄기세포와 주사형 MPEG-PCL diblock copolymer를 이용한 조직공학적 골재생)

  • Jeong, You-Min;Lee, Tai-Hyung;Park, Jeong-Kyun;Kim, Won-Suk;Shin, Joo-Hee;Lee, Eui-Seok;Rim, Jae-Suk;Jang, Hyon-Seok
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.1
    • /
    • pp.9-15
    • /
    • 2010
  • Aim of the study: As an injectable scaffold, MPEG-PCL diblock copolymer was applied in bone tissue engineering. In vivo bone formation was evaluated by soft X-ray, histology based on the rat calvarial critical size defect model. Materials and Methods: New bone formation was evaluated with MPEG-PCL diblock copolymer in rat calvarial critical size bone defect. No graft was served as control. 4, 8 weeks after implantation, gross evidence of bone regeneration was evaluated by histology and soft X-ray analysis. Results: The improved and effective bone regeneration was achieved with the BMP-2 and osteoblasts loaded MPEG-PCL diblock copolymer. Conclusion: It was confirmed that MPEG-PCL temperature sensitive hydrogels was useful as an injectable scaffold in bone regeneration.

Biocompatibility and Bone Conductivity of Porous Calcium Metaphosphate Blocks (생분해성 다공질 Calcium Metaphosphate 블록의 조직적합성에 관한 연구)

  • Lee, Yong-Moo;Kim, Seok-Young;Shin, Seung-Yun;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.4
    • /
    • pp.559-568
    • /
    • 1998
  • direct bone apposition during bone remodelling. To address these problem, we developed a new ceramic, calcium metaphosphate(CMP), and report herein the biologic response to CMP in subcutaneous tissue, muscle and bone. Porous CMP blocks were prepared by condensation of anhydrous $Ca(H_2PO_4)_2$ to form non-crystalline $Ca(PO_3)_2$. Macroporous scaffolds were made using a polyurethane sponge method. CMP block possesses a macroporous structure with approximate pore size range of 0.3-1mm. CMP blocks were implanted in 8mm sized calvarial defect, subcutaneous tissue and muscle of 6 Newzealand White rabbits and histologic observation were performed at 4 and 6 weeks later. CMP blocks in subcutaneous tissue and muscle were well adapted without any adverse tissue reaction and resorbed slowly and spontaneously. Histologic observation of calvarial defect at 4 and 6 weeks revealed that CMP matrix were mingled with and directly apposed to new bone without any intervention of fibrous connective tissue. CMP blocks didn't show any adverse tissue reaction and resorbed spontaneously also in calvarial defect. This result revealed that CMP had a high affinity for bone and was very biocompatible. From this preliminary result, it was suggested that CMP was a promising ceramic as a bone substitute and tissue engineering scaffold for bone formation.

  • PDF