• Title/Summary/Keyword: Saturated soils

Search Result 260, Processing Time 0.025 seconds

Changing C-N Interactions in the Forest Floor under Chronic N Deposition: Implications for Forest C Sequestration

  • Park, Ji-Hyung
    • Journal of Ecology and Environment
    • /
    • v.31 no.3
    • /
    • pp.167-176
    • /
    • 2008
  • Atmospheric N deposition has far-reaching impacts on forest ecosystems, including on-site impacts such as soil acidification, fertilization, and nutrient imbalances, and off-site environmental impacts such as nitrate leaching and nitrous oxide emission. Although chronic N deposition has been believed to lead to forest N saturation, recent evidence suggests that N retention capacity, particularly in the forest floor, can be surprisingly high even under high N deposition. This review aims to provide an overview of N retention processes in the forest floor and the implications of changing C-N interactions for C sequestration. The fate of available N in forest soils has been explained by the competitive balance between tree roots, soil heterotrophs, and nitrifiers. However, high rates of N retention have been observed in numerous N addition experiments without noticeable increases in tree growth and soil respiration. Alternative hypotheses have been proposed to explain the gap between the input and loss of N in N-enriched, C-limited systems, including abiotic immobilization and mycorrhizal assimilation, both of which do not require additional C sources to incorporate N in soil N pools. Different fates of N in the forest floor have different implications for C sequestration. N-induced tree growth can enhance C accumulation in tree biomass as observed across temperate regions. C loss from forests can amount to or outweigh C gain in N-saturated, declining forests, while another type of 'C-N decoupling' can have positive or neutral effects on soil C sequestration through hampered organic matter decomposition or abiotic N immobilization, respectively.

Measurement of $G_{max}$ of Sands Using Bender Element in Resonant Column and Torsional Shear Equipment (공진주/비틂전단 시험 및 벤더엘리먼트 시험을 이용한 사질토 지반의 최대전단탄성계수 평가)

  • Kim Dong-Soo;Youn Jun-Ung;Lee Sei-Hyun;Choo Yun-Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.10
    • /
    • pp.17-25
    • /
    • 2005
  • The bender element method is an experimental technique to determine very small strain ($<10^{-3}\%$), elastic shear modulus of a soil, $G_{max}$ by measuring the velocity of shear wave propagation through a sample. Bender elements have been applied as versatile transducers to measure small strain modulus of wet or dry soils in various laboratory apparatus. In this paper, bender element (BE), resonant column (RC) and torsional shear (TS) tests were performed on Toyoura sand at various testing conditions using the modified Stokoe type RC/TS testing equipment capable of performing BE test. Based on the results, applicabilities of the testing method using bender element were evaluated by comparing the values of $G_{max}$ obtained from RC/TS and BE testing methods. For more dependable evaluation, the loading frequency of each testing method was considered for the results obtained for samples in saturated condition by adapting Biot's theory.

Mohr-Coulomb Failure Criterion with Tensile Strength in Sand (모래에서 인장력을 고려한 Mohr-Coulomb 파괴규준)

  • Kim, Tae-Hyung;Lee, Yong-Su;Hwang, Woong-Ki;Kang, Ki-Min;Ahn, Yonug-Kyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.963-971
    • /
    • 2008
  • Unsaturated soil mechanics has been often used to find out a cause of failure (tensile failure) of retaining walls and hill slopes containing sandy soils. Checking shear strength is a popular method by considering suction stress developed form pore water menisci among the grains and saturated pockets of pore water under negative pressure. Linear Mohr-Coulomb failure criterion is generally adopted as a failure criterion. However, depending on relative density, stress history, and the magnitude of stress, the failure behavior of sand may not follow linear M-C frictional behavior. For stress in the large compressive ranges, say from tens to hundreds of kPa, the linear M-C criterion is an adequate representation for the shear strength behavior of sand. However, less than tens of kPa, the M-C criterion often can not be accurately represented. Depending on failure criterion, the uniaxial tensile strength is different over 100% relative error. For sand behavior under small compression regimes, therefore, such as under low or zero gravity, or under undergoing tensile failure in the crest area of hill slopes or behind retaining walls, it is important to consider the non-linear behavior.

  • PDF

Experimental study on water exchange between crack and clay matrix

  • Song, Lei;Li, Jinhui;Garg, Ankit;Mei, Guoxiong
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.283-291
    • /
    • 2018
  • Cracks in soil provide significant preferential pathways for contaminant transport and rainfall infiltration. Water exchange between the soil matrix and crack is crucial to characterize the preferential flow, which is often quantitatively described by a water exchange ratio. The water exchange ratio is defined as the amount of water flowing from the crack into the clay matrix per unit time. Most of the previous studies on the water exchange ratio mainly focused on cracked sandy soils. The water exchange between cracks and clay matrix were rarely studied mainly due to two reasons: (1) Cracks open upon drying and close upon wetting. The deformable cracks lead to a dynamic change in the water exchange ratio. (2) The aperture of desiccation crack in clay is narrow (generally 0.5 mm to 5 mm) which is difficult to model in experiments. This study will investigate the water exchange between a deformable crack and the clay matrix using a newly developed experimental apparatus. An artificial crack with small aperture was first fabricated in clay without disturbing the clay matrix. Water content sensors and suction sensors were instrumented at different places of the cracked clay to monitor the water content and suction changes. Results showed that the water exchange ratio was relatively large at the initial stage and decreased with the increasing water content in clay matrix. The water exchange ratio increased with increasing crack apertures and approached the largest value when the clay was compacted at the water content to the optimal water content. The effective hydraulic conductivity of the crack-clay matrix interface was about one order of magnitude larger than that of saturated soil matrix.

Reliability Analysis to Contaminant Migration in Saturated Sandy Soils : System Reliability Approach (포화(飽和)된 사질토(砂質土)내로의 오염물(汚染物) 이동에 대한 시스템 신뢰성(信賴性) 모델의 응용(應用))

  • Jang, Yeon Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.229-237
    • /
    • 1992
  • Series system reliability analysis of non-reactive contaminant transport is performed in a two dimensional horizontal domain with two different limit state functions: (1) concentration threshold and (2) exposure time threshold. The transient source transport model is combined with the system reliability model to evaluate the probability that a specified maximum concentration at a node of interest would be exceeded or that a moderate concentration would exceed some exposure limit over a given period of time. The results give probabilities of exceedence greater than probability of each component and they tend to be dominanted by the component with larger probability. Transverse dispersivity turns out to be an important parameter in addition to hydraulic conductivity in a two-dimensional contaminant transport model with transient source. System sensitivity is found to reflect the corresponding sensitivity of both components, with the component with larger probability having a greater influence.

  • PDF

Phytoremediation of Cu-contaminated Soil and Water by Commelina communis

  • Kim, Sung-Hyun;Lee, In-Sook
    • The Korean Journal of Ecology
    • /
    • v.28 no.1
    • /
    • pp.7-13
    • /
    • 2005
  • In the present study, we investigated the tolerance of Commelina communis to growth in Cu-contaminated soil and water We examined the germination rate, root and shoot growth of seedlings, fresh biomass in soil and water, and ability to eliminate Cu. We found that C. communis eliminated 41% of Cu in soil containing 50 mg Cu/kg and removed over 50% of Cu from water containing 100 mg Cu/L Cu. In addition, the plants could accumulate 90 mg Cu/g when grown in soil containing 50 mg Cu/kg and 140 mg Cu/g when grown in soil containing 100 mg Cu/kg thus higher levels of Cu removal were observed in soils containing higher Cu concentrations. In water, the maximal accumulation rate was 4.9 mg Cu/g root and 1.2 mg Cu/g shoot in water containing 20 mg Cu/L, and 7 days after exposure, Cu absorption saturated. Further, the growth rate of C. communis was not affected by up to 100 mg Cu/kg in the soil. Therefore, the phytotoxic effect of Cu on plants increased as the concentration of Cu was raised, although to different extents depending on whether the Cu was in soil or water. Overall, Cu removal from soil by C. communis was most effective at 100 mg Cu/kg in soil and 10 mg Cu/L in water. Finally, we identified two peaks of Cu-binding ligands in C. communis. Which is a high molecular weight peak (HMWL) at 60 kDa (Fraction 17 to 25) and a Cu binding peptide peak at <1 kDa (Very low molecular weight ligand: VLMWL). Cu-binding peptide (Cu-BP) was observed to have an amino acid composition typical of phytochelations.

Influencing Factors on Freezing Characteristics of Frost Susceptible Soil Based on Sensitivity Analysis (민감도 분석을 기반으로 한 시료의 동결 특성에 미치는 영향인자 분석)

  • Go, Gyu-Hyun;Lee, Jangguen;Kim, Minseop
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.8
    • /
    • pp.49-60
    • /
    • 2020
  • A fully coupled thermo-hydro-mechanical model is established to evaluate frost heave behaviour of saturated frost-susceptible soils. The method is based on mass conservation, energy conservation, and force equilibrium equations, which are fully coupled with each other. These equations consider various physical phenomena during one-dimensional soil freezing such as latent heat of phase change, thermal conductivity changes, pore water migration, and the accompanying mechanical deformation. Using the thermo-hydro-mechanical model, a sensitivity analysis study is conducted to examine the effects of the geotechnical parameters and external conditions on the amount of frost heave and frost heaving rate. According to the results of the sensitivity analysis, initial void ratio significantly affects each objective as an individual parameter, whereas soil particle thermal conductivity and temperature gradient affect frost heave behaviour to a greater degree when applied simultaneously. The factors considered in this study are the main factors affecting the frost heaving amount and rate, which may be used to determine the frostbite sensitivity of a new sample.

A Study on the Evaluation of Dynamic Behavior and Liquefaction Cau8ed by Earthquake of Sea Dike Structures on the Ground (방조제 축조 예정지반의 지진에 의한 액상화 거동 평가)

  • 도덕현;장병욱;고재만
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.2
    • /
    • pp.43-56
    • /
    • 1993
  • The laboratory tests are performed on how the liquefaction potential of the sea dike structures on the saturated sand or silty sand seabed could be affected due to earthquake before and after construction results are given as follows ; 1. Earthquake damages to sea dike structures consist of lateral deformation, settlement, minor abnormality of the structures and differential settlement of embankments, etc. It is known that severe disasters due to this type of damages are not much documented. Because of its high relative cost of the preventive measures against this type of damages, the designing engineer has much freedom for the play of judgement and ingenuity in the selection of the construction methods, that is, by comparing the cost of the preventive design cost at a design stage to reconstruction cost after minor failure. 2. The factors controlling the liquefaction potential of the hydraulic fill structure are magnitude of earthquake(max. surface velocity), N-value(relative density), gradation, consistency(plastic limit), classification of soil(G & vs), ground water level, compaction method, volumetric shear stress and strain, effective confining stress, and primary consolidation. 3. The probability of liquefaction can be evaluated by the simple method based on SPT and CPT test results or the precise method based on laboratory test results. For sandy or silty sand seabed of the concerned area of this study, it is said that evaluation of liquefaction potential can be done by the one-dimensional analysis using some geotechnical parameters of soil such as Ip, Υt' gradation, N-value, OCR and classification of soils. 4. Based on above mentioned analysis, safety factor of liquefaction potential on the sea bed at the given site is Fs =0.84 when M = 5.23 or amax= 0.12g. With sea dike structures H = 42.5m and 35.5m on the same site Fs= 3.M~2.08 and Fs = 1.74~1.31 are obtained, respectively. local liquefaction can be expected at the toe of the sea dike constructed with hydraulic fill because of lack of constrained effective stress of the area.

  • PDF

Evaluation of Soil Improvement by Carbonate Precipitation with Urease (요소분해효소에 의한 탄산칼슘 침전을 통한 지반 개량 평가)

  • Song, Jun Young;Sim, Youngjong;Jin, Kyu-Nam;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.9
    • /
    • pp.61-69
    • /
    • 2017
  • This study presents the experimental results of $CaCO_3$ formation in sand by the Enzyme Induced Carbonate Precipitation (EICP) method. Concentration of $CaCO_3$ with elapsed reaction time is calibrated by standardized procedure by measuring $CO_2$ pressure, and it increases with time towards asymptotic value. Jumunjin sand saturated with EICP solution shows that both shear wave velocity and electrical conductivity sharply increase as the reaction starts to approach to the constant values after 50 hours of reaction time. Urease concentration of 0.5 g/L exhibits 224% higher final shear wave velocity than that of 0.1 g/L. The nucleation models hint that carbonate tends to precipitate not only at grain contacts but also at grain surfaces. Regardless of urease concentration, electrical conductivity and shear wave velocity follow the unique path. The scanning electron microscopic images and X-ray computed tomographic images validate the spatial configuration of produced $CaCO_3$ in soils.

Contents of Soil Microbial Phospholipid Fatty Acids as Affected by Continuous Cropping of Pepper under Upland (노지 고추 연작 토양의 미생물 인지질 지방산 함량)

  • Hwang, Jae-Moon;Park, Kee-Choon;Kim, Su-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.1012-1017
    • /
    • 2010
  • This study was carried out to investigate the effect of continuous cropping of pepper on soil microbial phospholipid fatty acids (PLFAs) under upland applied without any pesticides and chemical herbicides from 2000 to 2009. Microbial PLFAs were analysed from soils sampled in 2009. Soil microbial diversities showed PLFAs of monoplanting of pepper were distinct from those of monoplanting of garlic and interplanting of garlic and pepper by principle component 2 (PC2). Furthermore, soil microbial activity of monoplanting of pepper significantly decreased PLFAs representing as VAM-fungi, whereas it significantly increased in actinomycetes and saturated/monounsaturated PLFAs' ratio. The results drove continuous cropping of pepper would vary the microbial community and their specific activity. Soil microbial activities in continuous cropping system would depend on crop root systems.