• Title/Summary/Keyword: Satellite tracking

Search Result 407, Processing Time 0.037 seconds

A Study on the Development of Ku-band Satellite Tracking Antenna System for Ship (선박용 Ku-Band 위성추적형 안테나시스템 개발에 관한 연구)

  • 배정철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.6
    • /
    • pp.1146-1152
    • /
    • 2003
  • Satellite television receiving antenna is required for watching TV on the vehicles, ship and car. Recently TV is not only facility as getting information but one of utility in our life. In Korea, already on the service multi-channel satellite TV using excellent visibility and sound, and there are many users using now by fixing antenna. On this thesis, developed ship's satellite TV receiving antenna, the azimuth controlling is adopted azimuth information using gyro sensor and differential of receiving signal strength algorithm, and elevation controlling used gimbals. The result of this research is successfully implemented Korean satellite tracking antenna as performance until ${\pm}$30 degree roll and pitch of ship motion.

Sliding Mode Control for Attitude Tracking of Thruster-Controlled Spacecraft

  • Cheon, Yee-Jin
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.257-261
    • /
    • 2001
  • Nonlinear pulse width modulation (PWM) controlled system is considered to achieve control performance of thruster controlled spacecraft. The actual PWM controlled motions occur, very closely, around the average model trajectory. Furthermore nonlinear PWM controller design can be directly applied to thruster controlled spacecraft to determine thruster on-time. Sliding mode control for attitude tracking of three-axis thruster-controlled spacecraft is presented. Simulation results are shown which use modified Rodrigues parameters and sliding mode control law to achieve attitude tracking of a three-axis spacecraft with thrusters.

  • PDF

RF COMPATIBILITY TEST BETWEEN KOMPSAT AND TTC STATION

  • Ahn, Sang-Il;Choi, Hae-Jin
    • Journal of Astronomy and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.191-198
    • /
    • 1999
  • Results of RF compatibility test between KOMPSAT(Korea Multi-Purpose SATellite) and TTC(Tracking, Telemetry, and Command) station are described. S/C(Spacecreft) RF Test, telemetry test, command test, ranging test, and tracking receiver test were performed with respect to pass/fail criteria. To provide physical RF interface between KOMPSAT and TTC equipment, direct low cable and antenna-to-antenna interface were implemented. Through RF compatibility test, it was fully demonstrated that KOMPSAT and TTC equipment are functionally workable.

  • PDF

Satellite orbit determination by E.K.F. and smoothing filter (확장칼만필터와 스무딩필터를 이용한 위성의 궤도결정)

  • 박수홍;최철환;조겸래
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.457-462
    • /
    • 1990
  • Lately, at an epock of full-scale satellite ranching plan of Korea, T.T.C (Tracking, Telemetery & Command) is a indispensable part. In this paper, particular attention is given to orbit determination problem of role of T.T.C. Orbit determination, which is applied to Kalman Filter and Smoothing Filter, use the observation data which is given by satellite tracking radar system, and then the simulation is accomplished. As a result, it shows effectiveness.

  • PDF

Fusion Tracking Filter for Satellite Launch Vehicles (위성발사체 궤도추정을 위한 융합필터 연구)

  • Ryu, Seong Sook;Kim, Jeongrae;Song, Yong Kyu;Ko, Jeonghwan
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.3
    • /
    • pp.37-42
    • /
    • 2007
  • The flight safety system for the satellite launch vehicles is required in order to minimize the risk due to launch vehicle failure. For prompt and reliable decision of flight termination, the flight safety system usually uses multiple sensors to estimate launch vehicle's flight trajectory. In that case, multiple types of observed tracking data makes it difficult to identify the flight termination condition. Therefore, a fusion tracking filter handling the multiple tracking data is necessary for the flight safety system. This research developed a simulation software for generating multiple types of launch vehicle tracking data, and then processed the data with fusion filters.

  • PDF

MONTE CARLO ANALYSIS FOR FIRST ACQUISITION AND TRACKING OF THE KOMPSAT SPACECRAFT

  • Lee, Byeong-Seon;Lee, Jeong-Sook
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.417-425
    • /
    • 1998
  • Monte Carlo analysis is performed for the first acquisition and tracking of the KOMP-SAT spacecrat in GSOC tracking station after separation from Taurus launch vehicle. The error bounds in position and velocity vector in Earth-fixed coordinate system at injection point are assumed based on the previous launch mission. Ten thousands injection orbital elements with normal distribution are generated and propagated for Monte Carlo analysis. The tracking antenna pointing errors at spacecraft rising time and closest approach time at German Space Operations Center(GSOC) Weiheim track-ing station are derived. Then the tracking antenna scanning angles are analyzed for acquisition and tracking of the KOMPSAT signal.

  • PDF

Preliminary Design of Tracking Mount for Movable SLR

  • Park, Cheol-Hoon;Son, Young-Su;Kim, Byung-In
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.2
    • /
    • pp.135-144
    • /
    • 2010
  • In this paper, we present the result of preliminary design of tracking mount for ARGO-M which is a movable satellite laser ranging (SLR) system developed by Korea Astronomy and Space Science Institute (KASI). The tracking mount consists of a couple of core parts such as driving motors, encoders and bearings, and the requirements of each parts are determined on the basis of the technical consideration. 2D and 3D models for tracking mount were preliminarily designed using the selected core parts. In order to evaluate the validity of the preliminarily design, the simulator to test the elevation axis was designed and manufactured. The test to check the tracking performance and system accuracy of the simulator was performed, and it was confirmed that the preliminary design meets the operating specifications. Additionally, it was found that the repetitive errors and hysteresis errors need to be improved by the additional control algorithm.

Admittance Control for Satellite Docking Ground Testing System (위성 도킹 지상시험장치의 어드미턴스 제어)

  • Heejin Woo;Youngjin Choi;Daehee Won
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.71-78
    • /
    • 2024
  • The paper presents a hardware-in-the-loop (HIL) system designed for satellite movement testing in the microgravity environment on the ground with two industrial robots. Especially, the paper deals with the contact between satellites during rendezvous and docking simulations of satellites using a robotic HILS system. For this purpose, the admittance control method plays a core role in preventing damage to the satellite or robot from contact force between satellites. The coordinate frames are transformed into the mass center of the satellite and the admittance control at the level of exponential coordinates is adopted to actively use the properties of Lie groups related to tracking errors. These methods effectively mitigate the risk of robot damage during inter-satellite contact and ensure efficient tracking performance of satellite movements.

Design of Doppler-Frequency Tracking System based on the Optimum Synchronization Techniques for the Digital Satellite Communication System (최적 동기방식에 의한 디지틀 위성통신 시스템의 도플러 위상 추적 장치 설계)

  • 최재익;박진우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.12
    • /
    • pp.2498-2507
    • /
    • 1994
  • This paper proposes the Doppler frequency tracking system by the optimum synchronization technique which compensates the frequency shifts caused by satellite movement in a coherent digital satellite communication system. A Doppler frequency shift caused by satellite movements and the design theories of the optimum synchronization system are mathematically described. Based on this theory, a Doppler frequency tracking system is implemented via digital signal processing techniques utilizing a DSP chip, RAMs, PROMs, and a 80286 microprocessor. The performance of the designed system was evaluated through the experiments with the INTELSATVA satellite.

  • PDF