• Title/Summary/Keyword: Satellite structure

Search Result 781, Processing Time 0.022 seconds

Design and Performance Analysis of Burst Structure for TDMA-based Next Generation Satellite Return Link Transmission (TDMA 기반의 차세대 위성리턴링크 버스트 구조 설계 및 성능 분석)

  • Han, Jae-Hee;Kim, Pan-Soo;Chang, Dae-Ig
    • Journal of Satellite, Information and Communications
    • /
    • v.4 no.2
    • /
    • pp.34-38
    • /
    • 2009
  • This paper is related with optimum burst structure design for high efficient TDMA satellite return link transmission. In general, some typical burst structure for data transmission is composed of a pair of preamble and traffic data in the DVB-RCS (Digital Video Broadcasting. Return Channel via Satellite) and IPOS (IP over Satellite) standard. This structure has some difficulties to increase spectral efficiency that it requires a large of preamble length, high SNR environment, or receiver complexity. To cope with them, burst structure with distributed pilot symbol can be used to alleviate the residual frequency offset effect by calculating accurate frequency offset than conventional one. In particular, we investigate some relevant to proposed distributed pilot structure, previously and analyze their strong points/drawbacks in terms of synchronization to draw the most appropriate one.

  • PDF

Modelling of a Shipboard Stabilized Satellite Antenna System Using an Optimal Neural Network Structure (최적 구조 신경 회로망을 이용한 선박용 안정화 위성 안테나 시스템의 모델링)

  • Kim, Min-Jung;Hwang, Seung-Wook
    • Journal of Navigation and Port Research
    • /
    • v.28 no.5
    • /
    • pp.435-441
    • /
    • 2004
  • This paper deals with modelling and identification of a shipboard stabilized satellite antenna system using the optimal neural network structure. It is difficult for shipboard satellite antenna system to control and identification because of their approximating ability of nonlinear function So it is important to design the neural network with optimal structure for minimum error and fast response time. In this paper, a neural network structure using genetic algorithm is optimized And genetic algorithm is also used for identifying a shipboard satellite antenna system It is noticed that the optimal neural network structure actually describes the real movement of ship well. Through practical test, the optimal neural network structure is shown to be effective for modelling the shipboard satellite antenna system.

Optimization of Satellite Structures by Simulated Annealing (시뮬레이티드 어닐링에 의한 인공위성 구조체 최적화)

  • Im Jongbin;Ji Sang-Hyun;Park Jungsun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.262-269
    • /
    • 2005
  • Optimization of a satellite structure under severe space launching environments is performed considering various design constraints. Simulate annealing, one of combinatorial optimization techniques, is used to optimize the satellite. The optimization results by the simulated annealing are compared to those by the method of modified feasible direction and genetic algorithm. Ten bar truss structure is optimized for feasibility study of the simulated annealing. Finally, the satellite structure is optimized by the simulated annealing algorithm under space environment. Weights of the satellite upper platform and propulsion module are minimized with consideration of several static and dynamic constraints. MSC/NASTRAN is used to find the static and dynamic responses. Simulated annealing has been programmed and integrated with the finite element analysis program for optimization. It is shown that the simulated annealing algorithm can be extended to the optimization of space structures.

Vibration Analyses of the STSAT-3 Satellite (과학기술위성 3 호 진동해석)

  • Cho, Hee-Keun;Suh, Jung-Ki
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.502-507
    • /
    • 2008
  • An entire composite structure satellite is developing for the first time in Korea. All of the structure is made of CFRP-composite faced aluminum honeycomb sandwich structure. Here the random and sinusoidal spectrum analysis of the satellite was carried out by using the finite element method. The general spectrum analysis was herein performed but also the PSD (power spectrum density) function for random vibration analysis had been transformed into equivalent time domain function and then transient analysis is conducted. The time history of displacement, acceleration, stress and velocity responses with respect to the PSD input has been achieved by the time dependent transient function transformed from frequency PDS function. It enables one to perform dynamic durability analysis and then expect the life time of the composite structure. The composite faced sandwich structure's spectrum analysis of a domestically-developed satellite, STSAT-3, has been discussed in the present study.

  • PDF

Design of High-gain Antenna for Satellite Communication with Miniaturized Feed Structure (소형화된 급전부를 갖는 위성통신용 고이득 안테나 설계)

  • Park, Joongki;Park, Do-hyun;Lee, Ho-sub;Heo, Jong-wan;Kwon, Gun-Sup
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1471-1476
    • /
    • 2018
  • In this paper, a high-gain antenna for satellite communication is proposed. The proposed antenna consists of septum polarizer, circular waveguide, Hat-feed structure that has a high-gain and efficiency. Especially, it is smaller and lighter than the conventional satellite communication antennas by applying a hat-feed structure. The measured results show that received gain of proposed antenna is better than 29.9 dBi and transmitted gain of proposed antenna is better than 30.5 dBi. The co-polarized and cross-polarized radiation patterns comply with ITU-RR Ap.8 and ITU-R S.731-1 that are recommended by International Telecommunication Union. The designed high-gain antenna for satellite communication is expected to be used for OTM and airborne satellite systems.

A Study on the Verifying Structural Safety of Satellite Structure by Coupled Load Analysis (연성하중해석을 통한 위성구조체의 구조안정성 검증 연구)

  • Kim, Kyung-Won;Kim, Sun-Won;Lim, Jae-Hyuk;Kim, Chang-Ho;Hwang, Do-Soon
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.1
    • /
    • pp.63-68
    • /
    • 2010
  • Satellite structure should be designed to support safely the payload and several actuators under launch and on-orbit environments. After the configuration design of satellite, the structural analysis is performed using quasi-static load provided by launch vehicle manufacturer for detail design of satellite. In order to verify the safety of satellite structure designed using quasi-static loads, launch vehicle manufacturer performs coupled load analysis with satellite and launch vehicle models. For developing satellite, satellite model was reduced into the Craig-Bampton model for coupled load analysis, and delivered to the launch vehicle manufacturer. Launch vehicle manufacturer have done the coupled load analysis, and offered the acceleration and displacement results to the satellite manufacturer. From the analysis results, we have confirmed that satellite is designed safely and there is no possibility of interference and conflict in the inner/outer side of satellite.

A Study on Satellite Processor System for Factory Automation (공장 자동화 응용을 위한 Satellite Processor System 연구)

  • 김종진;박찬익
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.5
    • /
    • pp.39-44
    • /
    • 1985
  • For the application of (actory automation, a UNIX system with satellite processor, which can be categorized into master / slave hierarchical structure, is studied and implemented. The kernel part of UHIX is modified for the master/slavc structure, but it is designed fully compatible with the existing UNIX systems. 4 special user process is created to make easy to down load developed program from host to satellite processor with the concept of co-process. Also satellite processor can send messages and request retrain seNices from host computer. The design principles considered here art reliability, expamibility, and con-currency.

  • PDF

Random Vibration Characteristics of a Whole Structure Composite Satellite Having Hybrid Composite Sandwich Panels (하이브리드 복합재 샌드위치 패널로 구성된 전구조 복합재 위성의 랜덤진동 특성 평가)

  • Cho, Hee-Keun;Rhee, Ju-Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.798-805
    • /
    • 2010
  • Whole composite structure small class (150kg) satellite, STSAT-3, was initially developed in Korea. The structure does have aluminum frames that support the structure, and it is composed of only composite sandwich panels. A number of electronic boxes and mechanical apparatus will be shielded within the compartments built up by the composite panels. This study focused on the random vibration responses of the satellite. For this objective, vibration tests and analyses have been successfully performed with respect to STM (structure and thermal model) of the satellite. Additionally, through the experiment and theoretical analyses, the both results' accuracy was verified by comparison each other.

A Study on Network Operation Structure and DataLink Protocol for Interworking of Ground Network ALL-IP at Next-Military Satellite Communication (차기군위성통신에서 지상망 ALL-IP 연동을 위한 네트워크 운용구조 및 데이터링크 프로토콜 연구)

  • Lee, Changyoung;Kang, Kyungran;Shim, Yong-hui
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.826-841
    • /
    • 2018
  • The military satellite communication of ROK military, ANASIS is designed for analog data such as voice and streaming data. ANASIS cannot fully support ALL-IP communications due to its long propagation delay. The next generation satellite communication system is being designed to overcome the limitation. Next generation satellite communications system considers both high-speed and low-speed networks to support various operating environment. The low-speed satellite supports both broadband and narrow-band communication. This network works as the infrastructure for of wide-area internetworking over multiple AS's in the terrestrial network. It requires minimum satellite frequency and minimum power and works without PEP and router. In this paper, we propose a network operation structure to enable the inter-operation between high and low-speed satellite networks. In addition, we propose a data link protocol for low speed satellite networks.

Dynamic Analysis of a Deployable Space Structure Using Passive Deployment Mechanism (수동형 전개힌지를 이용한 전개형 우주 구조물의 전개 동특성 해석)

  • Choi, Young-Jun;Oh, Hyun-Ung;Choi, Yong-Hoon;Lee, Kyung-Joo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.161-168
    • /
    • 2008
  • The deployable space structure is necessary to minimize the satellite volume and launch cost. For the deployment, passive deployment mechanism has widely been used to attenuate a latch shock induced when the structure is just fully deployed. To reduce the latch shock, viscous damper is applied to the passive deployment mechanism and it can control the deployment speed of the structure. In this paper, dynamic analysis of the deployable space structure using the passive deployment mechanism with the viscous damper has been performed. The viscous damping values have been optimized through numerical simulation. The satellite's attitude influenced by pyro activation for the release of the structure has also been investigated.