• 제목/요약/키워드: Satellite images

Search Result 1,890, Processing Time 0.024 seconds

Study on the extraction of ocean wind, wave and current using SAR (SAR를 이용한 해풍, 파랑, 해류 추출 기법 연구)

  • Kang, Moon-Kyung;Park, Yong-Wook;Lee, Moon-Jin;Lee, Hoon-Yol
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.187-194
    • /
    • 2006
  • Recently satellite SAR techniques have become essential observation tools for various ocean phenomena such as wind, wave, and current. The CMOD4 and CMOD-IFR2 models are used to calculate the magnitude of wind at SAR resolution with no directional information. Combination of the wave-SAR spectrum analysis and the inter-look cross-spectra techniques provides amplitude and direction of the ocean wave over a square-km sized imagette, The Doppler shift measurement of SAR image yields surface speed of the ocean current along the rador looking direction, again at imagette resolution. In this paper we report the development of a SAR Ocean processor (SOP) incorporating all of these techniques. We have applied the SOP to several RADARSAT-1 images of the coast of Korean peninsula and compared the results with oceanographic data, which showed reliability of spaceborne SAR-based oceanographic research.

  • PDF

Simulator of Underwater Navigation

  • Waz, Mariusz
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.333-335
    • /
    • 2006
  • Position of surface objects can be fixed in many ways. The most popular radionavigational systems, including satellite systems, make possible obtaining nearly continuous and very precise ship's position. However, under the water application of radionavigational systems is impossible. Underwater navigation requires other tools and solutions then these encountered in surface and air navigation. In underwater environment vehicles and submarines, operate that have to possess alternative navigational systems. Underwater vehicles, in order to perform their tasks require accurate information about their own, current position. At present, they are equipped with inertial navigational systems (INS). Accuracy of INS is very high but in relatively short periods. Position error is directly proportional to time of working of the system. The basic feature of INS is its autonomy and passivity. This characteristic mainly decides that INS is broadly used on submarines and other underwater vehicles. However, due to previously mentioned shortcoming i.e. gradually increasing position error, periodical calibration of the system is necessary. The simplest calibration method is surface or nearly surface application of GPS system. Another solution, which does not require interruption of performed task and emergence on the surface, is application of comparative navigation technique. Information about surrounding environment of the ship, obtained e.g. by means sonic depth finder or board sonar, and comparing it with accessible pattern can be used in order to fix ship's position. The article presents a structure and a description of working of underwater vehicle navigation system simulator. The simulator works on the basis of comparative navigation methods which exploit in turn digital images of echograms and sonograms. The additional option of the simulator is ability to robust estimation of measurements. One can do it in order to increase accuracy of position fixed with comparative navigation methods application. The simulator can be a basis to build future underwater navigation system.

  • PDF

Study on the Extraction of Ocean Wind, Wave and Current using SAR (SAR를 이용한 해풍, 파랑, 해류 추출 기법 연구)

  • Kang, Moon-Kyung;Park, Yong-Wook;Lee, Moon-Jin;Lee, Hoon-Yol
    • Journal of Navigation and Port Research
    • /
    • v.31 no.1 s.117
    • /
    • pp.35-42
    • /
    • 2007
  • Recently satellite SAR techniques have become essential observation tools for various ocean phenomena such as wind, wave, and current. The CMOD4 and CMOD-IFR2 models are used to calculate the magnitude of wind at SAR resolution with no directional information. Combination of the wave-SAR spectrum analysis and the inter-look cross-spectra techniques provides amplitude and direction of the ocean wave over a square-km sized imagette, The Doppler shift measurement of SAR image yields surface speed of the ocean current along the radar looking direction, again at imagette resolution. In this paper we report the development of a SAR Ocean processor(SOP) incorporating all of these techniques. We have applied the SOP to several RADARSAT-1 images of the coast of Korean peninsula and compared the results with oceanographic data, which showed reliability of spaceborne SAR-based oceanographic research.

Basic Concepts and Geological Applications of LiDAR (LiDAR 기법의 기본원리와 지질학적 적용)

  • Kim, Hyun-Tae;Kim, Young-Seog;We, Kwang-Jae
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.123-135
    • /
    • 2014
  • Earthquakes can cause serious loss of life and significant property damage. Thus, the study of active faults is important in evaluating future fault activity and hazards caused by future earthquake events. Structural mapping and the tracing of active faults are the primary steps in studies of active faults. Until now, active faults in South Korea have been mapped using aerial photography, satellite images, and low-quality DEMs. Lineament analysis as a means of identifying active faults is relatively difficult in Korea due to geological characteristics (weak tectonic activity) and dense vegetation cover. In this paper, we introduce the basic concept of the LiDAR technique (a new prospective remote sensing method) and a data analysis method that can overcome these problems. This paper will contribute to a better understanding of the airborne LiDAR technique and its application to South Korea. Some preliminary results from Korean and USA LiDAR data show the usefulness of this technique for tracing lineaments, active faults, and terraces in South Korea.

Extreme Enhancements in GPS TEC on 8 and 10 November 2004

  • Chung, Jong-Kyun;Jee, Gun-Hwa;Kim, Eo-Jin;Kim, Yong-Ha;Cho, Jung-Ho
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.30.2-30.2
    • /
    • 2010
  • It is a mistaken impression that the midlatitude ionosphere was a very stable region with well-known morphology and physical mechanism. However, the large disturbances of midlatitude ionospheric contents in response to global thermospheric changes during geomagnetic storms are reported in recent studies using global GPS TEC map and space-born thermospheric UV images, and its importance get higher with the increasing application areas of space navigation systems and radio communication which are mostly used in the midlatitudes. Positive and negative storm phases are used to describe increase and decrease of ionospheric electron density. Negative storms result generally from the enhanced loss rate of electron density according to the neutral composition changes which are initiated by Joule heating in high-latitudes during geomagnetic storms. In contrast, positive ionospheric storms have not been well understood because of rare measurements to explain the mechanisms. The large enhancements of ground-based GPS TEC in Korea were observed on 8 and 10 November 2004. The positive ionospheric storm was continued except for dawn on 8 November, and its maximum value is ~65 TECU of ~3 times compared with the monthly mean TEC values. The other positive phase on 10 November begin to occur in day sector and lasted for more than 6 hours. The O/N2 ratios from GUVI/TIMED satellite show ~1.2 in northern hemisphere and ~0.3 in southern hemisphere of the northeast Asian sector on 8 and 10 November. We suggest the asymmetric features of O/N2 ratios in the Northeast Asian sector may play an important role in the measured GPS TEC enhancements in Korea because global thermospheric wind circulation can globally change the chemical composition during geomagnetic storms.

  • PDF

Characteristics of Soil Moisture Distributions at the Spatio-Temporal Scales Based on the Land Surface Features Using MODIS Images (MODIS 이미지를 이용한 지표특성에 따른 토양수분의 시·공간적 분포 특성)

  • Kim, Sangwoo;Shin, Yongchul;Lee, Taehwa;Lee, Sang-Ho;Choi, Kyung-Sook;Park, Younshik;Lim, Kyoungjae;Kim, Jonggun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.29-37
    • /
    • 2017
  • In this study, we analyzed the impacts of land surface characteristics on spatially and temporally distributed soil moisture values at the Yongdam and Soyang-river dam watersheds in 2014 and 2015. The soil moisture, NDVI (Normalized Difference Vegetation Index) and temperature values at the spatio-temporal scales were estimated using satellite-based MODIS (MODerate Resolution Imaging Spectroradiometer) products. Then the Pearson correlations between soil moisture and land surface characteristics (NDVI, temperature and DEM-digital elevation model) were estimated and analyzed, respectively. Overall, the monthly soil moisture values at the time step were highly influenced by the precipitation amounts. Also, the results showed that the soil moisture has the strong correlation with DEM while the temperature was inversely correlated with the soil moisture. However the monthly correlations between NDVI and soil moisture were highly varied along the time step. These findings indicated that water loss near the land surface are highly occurred by soil and plant activities as evapotranspiration and infiltration during the no/less precipitation period. But the high precipitation amounts reduce the impacts of land surface characteristics because of saturated condition of land surface. Thus these results demonstrated that soil moisture values are highly correlated with land surface characteristics. Our findings can be useful for water resources/environmental management, agricultural drought, etc.

The impact of land use and land cover changes on land surface temperature in the Yangon Urban Area, Myanmar

  • Yee, Khin Mar;Ahn, Hoyong;Shin, Dongyoon;Choi, Chuluong
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.1
    • /
    • pp.39-48
    • /
    • 2016
  • Yangon Mega City is densely populated and most urbanization area of Myanmar. Rapid urbanization is the main causes of Land Use and Land Cover (LULC) change and they impact on Land Surface Temperature (LST). The objectives of this study were to investigate on the LST with respect to LULC of Yangon Mega City. For this research, Landsat satellite images of 1996, 2006 and 2014 of Yangon Area were used. Supervised classification with the region of interest and calculated change detection. Ground check points used 348 points for accuracy assessment. The overall accuracy indicated 89.94 percent. The result of this paper, the vegetation area decreased from $1061.08sq\;km^2$ (24.5%) in 1996 to $483.53sq\;km^2$ (11.2%) in 2014 and built up area clearly increased from $485.33sq\;km^2$ (11.2%) in 1996 to $1435.72sq\;km^2$ (33.1%) in 2014. Although the land surface temperature was higher in built up area and bare land, lower value in cultivated land, vegetation and water area. The results of the image processing pointed out that land surface temperature increased from $23^{\circ}C$, $26^{\circ}C$ and $27^{\circ}C$ to $36^{\circ}C$, $42^{\circ}C$ and $43.3^{\circ}C$ for three periods. The findings of this paper revealed a notable changes of land use and land cover and land surface temperature for the future heat management of sustainable urban planning for Yangon Mega city. The relationship of regression experienced between LULC and LST can be found gradually stronger from 0.8323 in 1996, 0.8929 in 2006 and 0.9424 in 2014 respectively.

Feature Selection for Image Classification of Hyperion Data (Hyperion 영상의 분류를 위한 밴드 추출)

  • 한동엽;조영욱;김용일;이용웅
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.2
    • /
    • pp.170-179
    • /
    • 2003
  • In order to classify Land Use/Land Cover using multispectral images, we have to give consequence to defining proper classes and selecting training sample with higher class separability. The process of satellite hyperspectral image which has a lot of bands is difficult and time-consuming. Furthermore, classification result of hyperspectral image with noise is often worse than that of a multispectral image. When selecting training fields according to the signatures in the study area, it is difficult to calculate covariance matrix in some clusters with pixels less than the number of bands. Therefore in this paper we presented an overview of feature extraction methods for classification of Hyperion data and examined effectiveness of feature extraction through the accuracy assesment of classified image. Also we evaluated the classification accuracy of optimal meaningful features by class separation distance, which is also a method for band reduction. As a result, the classification accuracies of feature-extracted image and original image are similar regardless of classifiers. But the number of bands used and computing time were reduced. The classifiers such as MLC, SAM and ECHO were used.

Numerical Simulation of Radar Backscattering from Oil Spills on Sea Surface for L-band SAR (기름이 유출된 바다 표면의 L-밴드 전파 산란에 대한 수치해석적 연구)

  • Park, Seong-Min;Yang, Chan-Su;Oh, Yi-Sok
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.1
    • /
    • pp.21-27
    • /
    • 2010
  • This paper presents a numerical simulation of the radar backscattering from oil spills on ocean surface. At first, a one-dimensionally rough sea surface is numerically generated for a given wind speed at HEBEI SPIRIT accident. Then, an oil-spilled sea surface is represented with a two-layered medium, which is generated by adding a thin low-dielectric oil layer on the randomly-rough highdielectric sea surface. The backscattering coefficients of various oil-spilled sea surfaces are obtained using the Method of Moments and Monte Carlo technique for various surface roughness, oil-layer thicknesses, frequencies, polarizations and incidence angles. The numerical method is verified with theoretical models for simple structures. The reduction of the backscattering coefficients due to the lowdielectric oil-layers on sea surfaces has been analyzed. These numerical results will help to detect any oil spills on sea surfaces, and consequently, to classify SAR images.

Topography, Vertical and Horizontal Deformation In the Sulzberger Ice Shelf, West Antarctica Using InSAR

  • Kwoun Oh-Ig;Baek Sangho;Lee Hyongki;Sohn Hong-Gyoo;Han Uk;Shum C. K.
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.1
    • /
    • pp.73-81
    • /
    • 2005
  • We construct improved geocentric digital elevation model (DEM), estimate tidal dynamics and ice stream velocity over Sulzberger Ice Shelf, West Antarctica employing differential interferograms from 12 ERS tandem mission Synthetic Aperture Radar (SAR) images acquired in austral fall of 1996. Ice, Cloud, and land Elevation Satellite (ICESat) laser altimetry profiles acquired in the same season as the SAR scenes in 2004 are used as ground control points (GCPs) for Interferometric SAR (InSAR) DEM generation. 20 additional ICESat profiles acquired in 2003-2004 are then used to assess the accuracy of the DEM. The vertical accuracy of the OEM is estimated by comparing elevations with laser altimetry data from ICESat. The mean height difference between all ICESat data and DEM is -0.57m with a standard deviation of 5.88m. We demonstrate that ICESat elevations can be successfully used as GCPs to improve the accuracy of an InSAR derived DEM. In addition, the magnitude and the direction of tidal changes estimated from interferogram are compared with those predicted tidal differences from four ocean tide models. Tidal deformation measured in InSAR is -16.7cm and it agrees well within 3cm with predicted ones from tide models. Lastly, ice surface velocity is estimated by combining speckle matching technique and InSAR line-of-sight measurement. This study shows that the maximum speed and mean speed are 509 m/yr and 131 m/yr, respectively. Our results can be useful for the mass balance study in this area and sea level change.