• Title/Summary/Keyword: Satellite data

Search Result 4,283, Processing Time 0.029 seconds

Himawari-8/AHI 기반 True color 영상 생산을 위한 시각화 향상 기법 비교 연구 (Comparison of Visualization Enhancement Techniques for Himawari-8 / AHI-based True Color Image Production)

  • 한현경;이경상;최성원;서민지;진동현;성노훈;정대성;김홍희;한경수
    • 대한원격탐사학회지
    • /
    • 제35권3호
    • /
    • pp.483-489
    • /
    • 2019
  • True color 영상은 자연색과 유사한 색상이 표출되며 이는 복잡한 지구의 대기 현상 및 지표의 변화에 빠른 모니터링이 가능하다는 장점이 있다. 현재 다양한 기관에서 true color 영상을 생산 중이며 우리나라에서도 차세대 기상위성으로 세대교체가 이루어져 true color 영상 생산의 필요성이 대두되고 있다. 따라서 본 연구에서는 Himawari-8 위성에 탑재된 Advanced Himawari Imager(AHI) 센서의 Top of Atmosphere(TOA) 자료를 이용해 true color 영상 생산을 위한 시각화 향상을 수행하였다. 시각화 향상을 위해 본 연구는 Nonlinear enhancement과 Histogram equalization 두 가지 기법을 각각 수행하였다. 이를 비교해 본 결과, Histogram equalization는 Nonlinear enhancement 대비 Solar Zenith Angle(SZA) $70^{\circ}$ 이상 지역과 해양 영역에서 청색 계열이 강한 영상이 나타났으며, Nonlinear enhancement 기법의 경우 Histogram equalization 기법과 비교했을 때 식생 영역이 붉은 특징이 나타났다.

온대북부형 낙엽활엽수림의 디지털 카메라 반복 이미지를 활용한 식물계절 분석 (Phenophase Extraction from Repeat Digital Photography in the Northern Temperate Type Deciduous Broadleaf Forest)

  • 한상학;윤충원;이상훈
    • 한국산림과학회지
    • /
    • 제109권4호
    • /
    • pp.361-370
    • /
    • 2020
  • 매년 반복되는 식물의 생활사를 장기적으로 관측하는 것은 기후변화 반응을 감지하는데 있어 가장 단순한 방법이며, 중요한 지표로 인식되고 있다. 반복 디지털 이미지를 이용한 식물계절 변화 관찰 방법은 전통적(현장에서 전문가에 의해 관찰) 방법과 위성원격탐사(위성영상의 식생지수를 활용한 위성원격 관찰)의 한계를 보완한 방법이다. 본 연구는 디지털 카메라를 기반으로 한 반복 이미지로부터 식물계절 변화 관측과 계절현상을 정량화하기 위하여 점봉산 산림생태계를 대상으로 하였다. 한반도 전역에 분포하는 신갈나무림(낙엽활엽수림)과 상록침엽수림의 대표 수종인 소나무를 선정하여 식물계절 특성에 따른 경향성을 파악하고자 하였다. RGB 채널 이미지 데이터로부터 식생지수(Gcc)를 산출하였다. Gcc 진폭의 크기는 상록침엽수림이 낙엽활엽수림 보다 작았으며, Gcc의 기울기(봄철 증가와 가을철 감소)는 상록침엽수림이 낙엽활엽수림과 비교하여 완만하였다. 소나무림은 생장의 시작(UD)이 신갈나무림에 보다 빨랐고, 생장의 종료(RD)는 늦은 것으로 나타났다. 식물계절 현상의 정확도 검증은 RMSE가 0.008(ROI1)과 0.006(ROI3)으로 높은 정확도를 보였다. 이러한 결과는 온대북부형 낙엽활엽수림의 Gcc 궤적의 경향성을 잘 반영하였으며, 디지털 카메라를 이용한 반복 이미지 관측 방법이 식물계절 변화 관측에 있어 유용할 것으로 판단된다.

효율적인 농업면적 조사를 위한 무인항공기와 GIS의 활용 (Utilization of UAV and GIS for Efficient Agricultural Area Survey)

  • 정우철;김성보
    • 융합정보논문지
    • /
    • 제10권12호
    • /
    • pp.201-207
    • /
    • 2020
  • 본 연구에서는 무인 항공기 촬영 사진 정보의 실용성을 파악하였다. 따라서 무인 항공기를 활용한 사진촬영 대상 조사구 중 밭층 조사구역를 대상으로 연속적으로 총 4회 조사하여 조사 시기별 촬영된 무인 항공기 사진을 활용하여 조사구의 작황 변화에 대하여 분석하였다. 지형, 작물 식재, 작형의 변화가 많게 예상되는 지역인 밭층에서는 무인 항공기를 활용하여 현장조사 시기에 맞게 해당 조사구를 직접 촬영하여 사진 정보를 수집, 활용하는 것이 적합하다. 그리고 비교적 변화가 없는 논-시설층에서는 경제적, 효율적 측면을 고려하여 위성영상을 활용하는 것이 적합한 것으로 나타났다. 조사구역에 작물 재배조사를 위한 시스템들이 잘 갖추어지게 된다면, 향후 무인 항공기를 활용하여 일정한 지역에 대한 사진자료를 취득한 후 라이브러리를 활용하여 실시간으로 딥러닝을 활용할 수 있다. 이를 통해 작물의 작황상태를 파악, 재배 면적과 단위 면적당 수량 조사 등으로 전체 작황 및 출하량 등을 분석하는 데에 사용할 수 있을 것으로 판단된다.

R-Mode 보정국과 감시국 선정을 위한 전파환경 분석에 관한 연구 (Analysis of Propagation Environment for Selecting R-Mode Reference and Integrity Station)

  • 전중성;정해상;국승기
    • 한국항해항만학회지
    • /
    • 제45권1호
    • /
    • pp.26-32
    • /
    • 2021
  • 해양에서 정보통신기술 기반의 4차 산업혁명 확산은 고정밀 및 안정적인 위치·항법·시각·정보(PNT&D)를 요구하고 있다. 국제해사기구(IMO)와 국제항로표지협회(IALA)에서는 범지구 위성 항법 시스템(GNSS) 의존도가 증가함에 따라 취약성 경감을 위해 백업시스템을 요구하고 있어 우리나라는 R-Mode 기술개발에 관한 연구를 진행하고 있다. 시설의 중복투자를 막기 위해 기존 해상 인프라인 중파를 이용하는 DGPS(Differential Global Positioning System) 보정국과 감시국 34개소 및 초단파를 이용하는 선박자동식별장치(AIS) 기지국을 활용하고자 하며, 일부 서해 지역에서 수신신호의 세기가 미약한 전파 음영지역이 있으므로, 이를 해결하기 위해 R-Mode 보정국과 감시국 신설을 통하여 전파 음영지역을 해소하고자 한다. 따라서 본 논문에서는 주파수가 낮은 대역에서(단파대 이하) 전파가 지표면(수면)을 따라 잘 전송되는 특징이 있어 시뮬레이션과 전파측정을 하였으며, 전파전파 특성 분석을 통하여 R-Mode 보정국과 감시국 신설 후보지를 제안하고자 한다. 본 논문을 활용하여 다른 지역의 전파 음영지역을 해소하기 위해 적절한 위치에 R-Mode 보정국과 감시국 후보지를 선정할 수 있다.

Coarse to Fine 단계를 통한 TerraSAR-X Staring Mode 다중 관측각 영상 정합기법 비교 분석 (Comparison of Multi-angle TerraSAR-X Staring Mode Image Registration Method through Coarse to Fine Step)

  • 이동준;김상완
    • 대한원격탐사학회지
    • /
    • 제37권3호
    • /
    • pp.475-491
    • /
    • 2021
  • 최근 사용 가능한 고해상도 위성 SAR 영상이 다양해지면서, 변화 탐지를 포함한 다양한 분야에서 SAR 영상에 대한 정밀 정합 요구가 높아지고 있다. 다중 관측각 환경에서의 고해상도 SAR 영상간 정합은 SAR 영상의 특성상 발생하는 스펙클 노이즈, 기하 왜곡 등에 의해 어려움이 있다. 본 연구에서는 독일 TerraSAR-X의 staring spotlight 모드로 촬영된 고해상도 SAR 영상을 활용하여, 개략정합 단계와 정밀정합 단계의 2단계에 걸친 영상정합 알고리즘을 제안하였다. 개략정합 단계에서는 적응형 샘플링 기법과 SAR-SIFT(Scale Invariant Feature Transform)를 결합하여 정합을 수행하였고, 정밀정합 단계에서는 3가지의 강성 정합 기법인 NCC(Normalized Cross Correlation), PC (Phase Congruency)-NCC, MI (Mutual Information) 기법과 비강성 정합 기법인 Gefolki (Geoscience extended Flow Optical Flow Lucas-Kanade Iterative)를 적용하여 정합 성능을 비교 분석하였다. 정합 결과는 RMSE (Root Mean Square Error)와 FSIM (Feature Similarity) 지수를 사용하여 정량적인 비교를 수행하였다. 사용한 모든 영상 조합에서 강성정합 기법은 Gefolki 알고리즘에 비해 저조한 정합 성능을 보였다. 강성정합 모델들은 지형기복이 큰 지역에서 정합오차가 크게 발생함을 확인할 수 있었다. Gefolki 알고리즘 적용 결과, RMSE 1~3화소를 보이며 가장 우수한 결과를 확인하였으며, FSIM 지수 또한 다른 기법에 비해 0.02~0.03 이상 높은 값을 취득했다. 다중 관측각 영상에서의 고해상도 SAR 영상 간 정합 성능을 비교하였으며, 강성정합 기법에 비해 Gefolki 알고리즘을 통해 지형효과를 충분히 줄일 수 있음을 확인했다. 이는 추후 변화탐지를 포함한 다양한 분야의 전 처리 과정에 효과적으로 사용될 수 있을 것으로 기대된다.

공공기준점을 이용한 GNSS 높이측량 정밀도 분석 연구 (A Study on the Accuracy of GNSS Height Measurement Using Public Control Points)

  • 원두견;최윤수;윤하수;이원종
    • 한국지리정보학회지
    • /
    • 제24권2호
    • /
    • pp.78-90
    • /
    • 2021
  • 정밀지오이드를 구축하기 위하여 육상, 해상, 항공, 위성 중력측정 방법으로 다양화되고 측정 기술이 발전되어 고해상도 고정밀도의 중력자료 확보가 가능해졌다. 정밀지오이드의 구축은 별도의 수준측량 없이 GNSS 측량을 통해 표고를 빠르고 편리하게 결정할 수 있으며 우리나라는 2014년부터 국토지리정보원에서 GNSS를 기반으로 한 높이측량 정확도를 향상시키기 위해 합성지오이드 모델을 개발하고 있다. 본 연구에서는 공공측량의 GNSS높이측량을 검증하기 위하여 기존의 고시된 공공기준점을 선점하여 GNSS높이측량 결과와 비교 분석하였다. 실험은 연구보고서 등에서 정밀도가 낮은 지역으로 제시되거나 정밀도가 낮을 것으로 예상되는 연안, 접경, 산악지형의 공공기준점에 대하여 GNSS높이측량을 수행하고 정밀도를 분석하였다. GNSS높이측량 검증을 위해 공공기준점 GNSS높이측량 기지점으로 사용될 주변 통합기준점의 GNSS 타원체고를 점검하였다. 점검된 통합기준점을 기준으로 공공기준점의 GNSS 타원체고를 산출하고 KNGeoid18 모델을 이용하여 표고를 계산하여 직접수준측량 표고결과와 비교하였다. 분석 결과 연안, 접경, 산악 지역 공공기준점의 GNSS 높이측량 결과가 3·4급 공공수준측량 정확도에 만족하는 것으로 나타났다. 이를 통하여 사용자가 요구하는 높이 정확도에 따라 기존의 직접수준측량보다 GNSS 높이측량이 효율적으로 이용될 수 있으며, KNGeoid18도 자율주행자동차, 무인항공기 등 다양한 분야에서 활용될 수 있을 것으로 판단된다.

정상상황 전리층 경향 분석 및 지진에 의한 전리층 교란검출 (Analysis on Normal Ionospheric Trend and Detection of Ionospheric Disturbance by Earthquake)

  • 강선호;송준솔;김오종;기창돈
    • 한국항행학회논문지
    • /
    • 제22권2호
    • /
    • pp.49-56
    • /
    • 2018
  • 지진, 쓰나미 등에 의해 지상에서 생성된 에너지는 대기를 통해 전파되어 전리층 전자밀도를 교란시키므로, 위성신호의 전리층 지연을 이용하면 충격파에 의한 교란을 관측할 수 있다. 전리층의 전자밀도는 지상의 교란원인 이외에도 태양활동, 위도, 계절, 지방시 등 다양한 요인들에 의해 영향을 받는데, 지진 및 쓰나미와 같은 이상상황을 구분하기 위해서는 정상상황에서의 전리층 경향분석이 필요하다. 또한 전리층 교란은 지상의 교란원인으로부터 거리가 멀어질수록 크기가 감소하므로, 원거리 전리층 교란을 효과적으로 검출하기 위한 적절한 기법이 필요하다. 본 논문에서는, 정상상황에서의 전리층 경향분석을 위해 ionosphere exchange(IONEX) 데이터를 이용하여 태양극대기 및 극소기, 위도, 계절 등에 의한 전리층 경향을 분석해보았다. 분석한 정상상황 전리층을 바탕으로 경향성이 제거된 감시값을 설정하고, 전리층 교란의 지속성을 이용한 원거리 교란검출 기법을 설계해 이에 대한 오경보율을 분석하였다. 결과적으로 전리층 지연의 2차 미분 값이 감시값으로 선정되었으며, 오경보율은 1.4e-6수준으로 나타났다. 설계한 기법을 2011 도호쿠 대지진 발생 시 수집된 데이터에 적용하여 교란 검출을 확인하였다.

변화 주목 기반 차량 흠집 탐지 시스템 (Change Attention-based Vehicle Scratch Detection System)

  • 이은성;이동준;박건희;이우주;심동규;오승준
    • 방송공학회논문지
    • /
    • 제27권2호
    • /
    • pp.228-239
    • /
    • 2022
  • 본 논문에서는 카셰어링 서비스(car sharing service)에서 차량 상태 무인 검수를 위한 흠집 탐지 딥 러닝 모델을 제안한다. 기존의 차량 상태 검수 시스템은 대여 전, 후 사진에서 각각 흠집을 탐지하는 딥 러닝 모델과 탐지된 두 흠집 영상을 수작업으로 대조하여 새롭게 발생한 흠집을 탐색하는 두 단계로 구성되어 있다. 따라서 수동작업이 필요한 두 단계 모델을 한 단계로 줄이는 무인 흠집 탐지 모델을 위성영상에서 변화를 탐지하는 딥 러닝 모델에 전이 학습을 적용하여 구축한다. 그리고 광택 처리된 자동차 표면의 휘도가 비등방성이고 비전문가인 이용자가 일반 카메라로 촬영하기 때문에 정반사(specular reflection)가 흠집 탐지 성능에 크게 영향을 미친다. 따라서 정반사광으로 발생하는 오탐지를 감소시키기 위하여 정반사광 성분을 제거하는 전처리 과정을 적용한다. 이용자가 휴대폰 카메라로 촬영한 데이터에 대해 제안하는 시스템은 주관적인 측면과 정밀도(precision), 재현율(recall), F1, Kappa 척도면에서 각각 67.90%, 74.56%, 71.08%, 70.18%로서 높은 일치도를 보인다.

농작물 모니터링을 위한 점수기반 식생지수 합성기법의 개발 (Development of Score-based Vegetation Index Composite Algorithm for Crop Monitoring)

  • 김선화;은정
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1343-1356
    • /
    • 2022
  • 광학위성영상을 이용해 농작물을 모니터링 할 때 가장 문제가 되는 것은 구름이나 그림자이다. 구름과 그림자의 영향을 줄이기 위해 일정 주기동안 최대 정규식생지수를 선택하는 합성기법이 사용되었다. 그러나, 본 방법은 구름의 영향을 줄이기는 하나, 일정 주기 동안 최대 정규식생지수(Normalized Difference Vegetation Index, NDVI)값만을 사용하기 때문에 NDVI가 감소하는 현상을 신속히 보여주기 어렵다. 이에 따라, 구름의 영향을 최소화하면서 식생의 분광정보를 최대한 유지하기 위한 방안으로 합성 시 여러 환경인자를 정의하고, 이에 대한 점수를 부여하여 합성 시 가장 적합한 화소를 선택하는 방법인 점수 기반 합성기법이 제시되었다. 본 연구에서는 Sentinel-2A/B Level2A 반사율 영상과, 부가정보로 제공되는 구름, 그림자, Aerosol Optical Thickness(AOT), 촬영날짜, 센서천정각 등을 이용한 점수 기반 식생지수 합성기법을 개발하였다. 2021년동안 당진 논지역과 태백 고랭지 배추밭을 대상으로 15일 주기와 한달 주기로 점수기반 합성기법을 적용한 결과, 구름의 영향을 받은 우기만을 제외하고 15일 주기 합성 시 한달 주기에 비해 보다 빠르고 자세한 NDVI값의 변화를 볼 수 있었다. 특정 영상에서는 합성 NDVI영상에서 부분적으로 날짜별 차이가 나타나 공간적으로 이질적인 부분이 보이기도 하는데, 이는 사용한 구름, 그림자 정보의 부정확성으로 인한 것으로 사려된다. 향후 입력정보의 정확도를 향상시키고, Maximum NDVI Composite (MNC) 기반 합성기법과 정량적 비교를 수행할 예정이다.

CycleGAN 기반 영상 모의를 적용한 건물지역 변화탐지 분석 (The Analysis of Change Detection in Building Area Using CycleGAN-based Image Simulation)

  • 조수민;원태연;어양담;이승우
    • 한국측량학회지
    • /
    • 제40권4호
    • /
    • pp.359-364
    • /
    • 2022
  • 원격탐사 영상의 변화탐지는 카메라의 광학적 요인, 계절적 요인, 토지피복 특성에 의해 오류가 발생한다. 본 연구에서는 CycleGAN (Cycle Generative Adversarial Network) 방법을 사용하여 촬영 각도에 따른 영상 내 건물 기울기를 모의 조정하였고, 이렇게 모의한 영상을 변화탐지에 활용하여 탐지 정확도 향상에 기여하도록 하였다. CycleGAN 기반으로 두 개 시기 영상 중 한 시기 영상을 기준으로 건물의 기울기를 다른 한 영상 내 건물에 유사하게 모의하였고 원 영상과 건물 기울기에 대한 오류를 비교 분석하였다. 실험자료로는 서로 다른 시기에 다른 각도로 촬영되었고, 건물이 밀집한 도시지역을 포함한 Kompsat-3A 고해상도 위성영상을 사용하였다. 실험 결과, 영상 내 건물 영역에 대하여 두 영상의 건물에 의한 오탐지 화소 수가 원 영상에서는 12,632개, CycleGAN 기반 모의 영상에서는 1,730개로 약 7배 감소하는 것으로 나타났다. 따라서, 제안 방법이 건물 기울기로 인한 탐지오류를 감소시킬 수 있음을 확인하였다.