• Title/Summary/Keyword: Satellite Signals

Search Result 501, Processing Time 0.027 seconds

Design of Identification and Measurements Acquisition Algorithm for Multi-Type Jammer Localization (다종 전파교란원 위치추정을 위한 식별 및 측정치 획득 알고리즘 설계)

  • Kang, Jae-Min;Lim, Deok-Won;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.616-624
    • /
    • 2013
  • When jamming signal is received, there would be malfunctions in GPS-based precise location systems. Especially, in aviation fields, these malfunctions may lead to more serious damages. Naturally, there are some research results about the prevention or location method for one jammer, but it is hard to identify and obtain measurements when multiple and various type signals are received. Therefore, we propose a method of identification and measurements acquisition algorithm in order to localize the multiple jammers which transmit CW, DSSS and SCW type signals. Also, a computer simulation is carried out so as to validate the feasibility of the proposed method by using MATLAB. From the simulation results, it is confirmed that the proposed method successfully identified the signal type and acquired the measurements of CW, DSSS and SCW type signals.

A Study of GNSS Performance Enhancement using Correction Estimation and Visible Satellites Selection (보정량 추정 및 가시위성 선정 기법을 이용한 위성항법 성능개선 연구)

  • Bong, Jae Hwan;Jeong, Seong-Kyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.995-1002
    • /
    • 2022
  • Global Navigation Satellite System(GNSS) is a convenient system that acquires position and time information of a receiver if only satellite signals can be received anywhere in the world. However navigation signals include errors and a position error occurs according to the reception state of the signal. Also, a position error is affected by the geometric arrangement of the satellites. Therefore a receiver position performance varies by the number and status of visible satellites The condition of satellite signals is not good when the satellite rises or sets and the position change of receiver occurs when the signal is blocked by an obstacle such as a building in the urban area. In this paper, we proposed methods to improve the GNSS performance by using pseudorange correction method estimating the correction amount and the visible satellites selection method. By applying the proposed methods to an environment in which the number of visible satellites changes variously, the performance enhancement was verified.

The Status and Plan of Galileo Project (GALILEO PROJECT 추진현황 및 대응방안 연구(2))

  • Kong, Hyun-Dong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.06a
    • /
    • pp.368-371
    • /
    • 2009
  • The GALILEO Project is to be the one and only European Global Navigation Satellite System(GNSS). The GIVE-B satellite, a second experimental GALILEO satellite was launched and started the transmission of ranging signals. GIOVE-B satellite is intended as a trueprototype of future GALILEO satellite. So I introduce the standard deviation of code multi path, signal power, antennas performance and L1-E5 group delay etc. Therefore I comprehend the current progress and tend of GALILEO Project and try to propose the national countremeasures.

  • PDF

Estimation of river discharge using satellite-derived flow signals and artificial neural network model: application to imjin river (Satellite-derived flow 시그널 및 인공신경망 모형을 활용한 임진강 유역 유출량 산정)

  • Li, Li;Kim, Hyunglok;Jun, Kyungsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.7
    • /
    • pp.589-597
    • /
    • 2016
  • In this study, we investigated the use of satellite-derived flow (SDF) signals and a data-based model for the estimation of outflow for the river reach where in situ measurements are either completely unavailable or are difficult to access for hydraulic and hydrology analysis such as the upper basin of Imjin River. It has been demonstrated by many studies that the SDF signals can be used as the river width estimates and the correlation between SDF signals and river width is related to the shape of cross sections. To extract the nonlinear relationship between SDF signals and river outflow, Artificial Neural Network (ANN) model with SDF signals as its inputs were applied for the computation of flow discharge at Imjin Bridge located in Imjin River. 15 pixels were considered to extract SDF signals and Partial Mutual Information (PMI) algorithm was applied to identify the most relevant input variables among 150 candidate SDF signals (including 0~10 day lagged observations). The estimated discharges by ANN model were compared with the measured ones at Imjin Bridge gauging station and correlation coefficients of the training and validation were 0.86 and 0.72, respectively. It was found that if the 1 day previous discharge at Imjin bridge is considered as an input variable for ANN model, the correlation coefficients were improved to 0.90 and 0.83, respectively. Based on the results in this study, SDF signals along with some local measured data can play an useful role in river flow estimation and especially in flood forecasting for data-scarce regions as it can simulate the peak discharge and peak time of flood events with satisfactory accuracy.

A Study on the Optimization of the Transmission Method for COMS Satellite Control Signal (통신해양기상위성의 위성 관제 신호 전송 방식의 최적화 연구)

  • Kim, Yeong-Wan;Yang, U-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.47-53
    • /
    • 2006
  • The power losses due to modulation index for multi-modulation scheme were analyzed under various transmission mode of satellite control and the necessary satellite link margin for transmission mode were proposed in this paper On the basis of the analyses for interference between the transmission signals and threshold of satellite control signal receiver, the optimal subcarrier signals were proposed for satellite range measurement methods, respectively. The subcarrier signal of 12 kHz or 14 kHz is proper for telecommand using the ESA method, and 16 kHz for telecommand signal using the GSTDN method. On the other hand, the telemetry subcarrier of 65.536 kHz is a proper in the viewpoint of receiver threshold value.

Design and Implementation of Interference-Immune Architecture for Digital Transponder of Military Satellite (군통신위성 디지털 중계기의 간섭 회피 처리 구조 설계 및 구현)

  • Sirl, Young-Wook;Yoo, Jae-Sun;Jeong, Gun-Jin;Lee, Dae-Il;Lim, Cheol-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.594-600
    • /
    • 2014
  • In modern warfare, securing communication channel by combatting opponents' electromagnetic attack is a crucial factor to win the war. Military satellite digital transponder is a communication payload of the next generation military satellite that maintains warfare networks operational in the presence of interfering signals by securely relaying signals between ground terminals. The transponder in this paper is classified as a partial processing transponder which performs cost effective secure relaying in satellite communication links. The control functions of transmission security achieve immunity to hostile interferences which may cause malicious effects on the link. In this paper, we present an efficient architecture for implementing the control mechanism. Two major ideas of pipelined processing in per-group control and software processing of blocked band information dramatically reduce the complexity of the hardware. A control code sequence showing its randomness with uniform distribution is exemplified and qualification test results are briefly presented.

Studies on Applying Scalable Video Coding Signals to Ka band Satellite HDTV Service (SVC 신호의 Ka대역 HDTV 위성방송서비스 적용에 관한 연구)

  • Yoon, Ki-Chang;Chang, Dae-Ig;Sohn, Won
    • Journal of Broadcast Engineering
    • /
    • v.13 no.6
    • /
    • pp.905-914
    • /
    • 2008
  • The paper studied the scheme of applying the MPEG-4 SVC signal to the Ka band satellite broadcasting system through the JSCC system to resolve the rain fading problem generated when providing the Ka band HDTV satellite broadcasting service. The Ka band satellite broadcasting system is based on the VCM mode of the DVB-S2, and the SVC signal is considered as one of the spatial scalability, the SNR scalability and the temporal scalability. The JSCC system jointed all the layers of the source coding system and the channel coding system, and allocated bit rate to source coding and channel coding for each layer to get the optimum receiving quality. The layers are consists of a base layer and an enhancement layer, and the bit rate of each layer is affected by the SVC signal. The applicability of the three SVC signals to the Ka band satellite broadcasting service is analyzed with respect to the rain fading, and the scheme of applying the most excellent SVC to the service is considered.

Design and implementation of Multiband Antenna for Satellite Broadcasting Receiving using Beam Tilt (빔 틸트를 이용한 위성 방송 수신용 다중 대역 안테나 설계 및 구현)

  • Park, Kwan-Joon;Park, Dong-Kook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.3
    • /
    • pp.318-325
    • /
    • 2019
  • As satellite communication technology with high efficiency and spatiality evolves, demands of customer for efficient and effective satellite broadcasting services are increasing due to interval reduction of the between satellites, and the limited radio-frequency spectrum resources. Recently, research on antenna that it possible to simultaneously receive multiple signal from various satellites while holding maintain the same number of previous reception channels by using the single reflector has been ongoing. It is necessary to be able to simultaneously receive signals from various satellites in order to maintain the same number of previous reception channels. We suggest a multiband antenna which can be simultaneously and independently receiving Ku band and Ka band satellite broadcasting signals transmitted by three adjacent satellites. We have designed and simulated using commercial design tools TICRA CHAMP and CST MWS to meet the target specifications. It appears that the antenna has -10 dB return loss, and more than 40 dBi directivity gain in Ku band and Ka band respectively.

A Study on Establishing a Market Entry Strategy for the Satellite Industry Using Future Signal Detection Techniques (미래신호 탐지 기법을 활용한 위성산업 시장의 진입 전략 수립 연구)

  • Sehyoung Kim;Jaehyeong Park;Hansol Lee;Juyoung Kang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.249-265
    • /
    • 2023
  • Recently, the satellite industry has been paying attention to the private-led 'New Space' paradigm, which is a departure from the traditional government-led industry. The space industry, which is considered to be the next food industry, is still receiving relatively little attention in Korea compared to the global market. Therefore, the purpose of this study is to explore future signals that can help determine the market entry strategies of private companies in the domestic satellite industry. To this end, this study utilizes the theoretical background of future signal theory and the Keyword Portfolio Map method to analyze keyword potential in patent document data based on keyword growth rate and keyword occurrence frequency. In addition, news data was collected to categorize future signals into first symptom and early information, respectively. This is utilized as an interpretive indicator of how the keywords reveal their actual potential outside of patent documents. This study describes the process of data collection and analysis to explore future signals and traces the evolution of each keyword in the collected documents from a weak signal to a strong signal by specifically visualizing how it can be used through the visualization of keyword maps. The process of this research can contribute to the methodological contribution and expansion of the scope of existing research on future signals, and the results can contribute to the establishment of new industry planning and research directions in the satellite industry.

Prototype Development of GPS Jammer Localization System for GPS based Air Navigation System (GPS기반 항공 항법 장비를 위한 전파위협원 위치추적 시작품 개발)

  • Kang, Jae Min;Lim, Deok Won;Chun, Sebum;Heo, Moon Beom;Yeom, Chan Hong
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.2
    • /
    • pp.40-48
    • /
    • 2014
  • In this paper, a prototype of GPS jammer localization system for precise landing is developed. The jammer localization system consists of the four jamming signal receivers for collecting RF signal, one central tracking station for estimating jammer position, and one monitoring station for displaying estimated position on the map. In order to estimate jammer location TDOA and AOA algorithm are introduced, and the function and design parameters of the developed prototype are proposed. CW, DSSS, Swept CW jamming signals were generated and used. From the results, it can be confirmed that developed system meets the performance goal.