• Title/Summary/Keyword: Satellite Navigation

Search Result 1,064, Processing Time 0.023 seconds

LEO Satellite Position and Velocity Coordinate Transformation Using GPS CNAV (GPS CNAV 데이터를 이용한 저궤도 위성의 위치와 속도의 좌표 변환)

  • Kim, Ghang-Ho;Kim, Chong-Won;Kee, Chang-Don;Choi, Su-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.3
    • /
    • pp.271-278
    • /
    • 2013
  • In this paper, ECEF to ECI coordinate transformation algorithm which uses EOP parameters in GPS civil navigation message is introduced, and ECEF to ECI coordinate transformation simulation results were analyzed. The ECEF to ECI coordinate transformation includes GPS to UTC, and UTC to other types of time conversions and EOP data processing algorithms. The ECEF to ECI coordinate conversion algorithm was certified using real LEO satellite position, velocity GPS data, and EOP data which offered by the Earth Orientation Center.

A Survey on LEO-PNT Systems

  • Hong-Woo Seok;Sangjae Cho;Seung-Hyun Kong;Jung-Min Joo;Jongwon Lim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.323-332
    • /
    • 2023
  • Today, services using Positioning, Navigation, and Timing (PNT) technology are provided in various fields, such as smartphone Location-Based Service (LBS) and autonomous driving. Generally, outdoor positioning techniques depend on the Global Navigation Satellite System (GNSS), and the need for positioning techniques that guarantee positioning accuracy, availability, and continuity is emerging with advances in service. In particular, continuity is not guaranteed in urban canyons where it is challenging to secure visible satellites with standalone GNSS, and even if more than four satellites are visible, the positioning accuracy and stability are reduced due to multipath channels. Research using Low Earth Orbit (LEO) satellites is already underway to overcome these limitations. In this study, we conducted a trend analysis of LEO-PNT research, an LEO satellite-based navigation and augmentation system. Through comparison with GNSS, the differentiation of LEO-PNT was confirmed, and the system design and receiver processing were analyzed according to LEO-PNT classification. Lastly, the current status of LEO-PNT development by country and institution was confirmed.

Preliminary Study of Ionosphere for Global Navigation Satellite Systems (위성항법시스템 적용을 위한 전리층 기본 연구)

  • Yang, T.H.;Lee, Y.J.;Jun, H.S.;Nam, G.W.;Kim, J.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.1
    • /
    • pp.55-62
    • /
    • 2006
  • Ionospheric signal delay is a critical factor for precision differential GNSS(Global Navigation Satellite Systems) applications such as GBAS(Ground-Based Augmentation System) and SBAS (Satellite-Based Augmentation System). Most concern is the impact of the ionospheric storm caused by the interaction between Solar and geomagnetic activities. After brief description of the ionosphere and ionospheric storm, ionospheric models for SBAS are discussed. History of recent ionospheric storms is reviewed and their impact on GNSS is discussed. In order to support Korean GNSS augmentation system development, a preliminary study on the regional ionosphere performed. A software tool for computing regional ionospheric maps is being developed, and initial results during a recent storm period is analyzed.

  • PDF

Geometric position determination algorithm and simultion in satellite navigation

  • Nakagawa, Miki;Hashimoto, Hiroshi;Higashiguchi, Minoru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.672-675
    • /
    • 1994
  • This paper presents a new algorithm to determine the receiver position in satellite navigation for GPS(Global Positioning System). The algorithm which based on vector analysis is able to obtain simultaneously the receiver position and the direction vector which is from the receiver position to a satellite. In its first calculation stage it, does riot require the complex initial value which is used in the previous works and affects the accuracy of the observed receiver position. Furthermore, the algorithm tells us whether a selected configuration among the visible satellites is good or poor for the accuracy. Comparing the algorithm with the previous method, the effectiveness of the algorithm is verified through the experimental simulations.

  • PDF

A Study on the Land Cover Classification and Facilities Management of Pusan Port using Satellite data (위성영상을 이용한 부산항만 주변지역 토지피복분류 및 시설물관리 구축 방안)

  • 이기철;김정희;이병환
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.10a
    • /
    • pp.59-65
    • /
    • 1998
  • A thematic land cover map of Pusan port area was developed using Landsat satellite TM(Thematic Mapper) image. Two types of digital data which are road and sea water layer are extracted from existing paper map were overlayed over the developed land cover map. SPIN-2(KNR-1000) image was utilized to make a facility map of JaSungDae port. SPIN-2 image, which has a cell resolution of 1.56 m showed higer accuracy than TM image, which has a cell resolution of 30 m for facility mapping. Overall, the techniques of digital mapping using satellite image are very useful, effective and efficient.

  • PDF

The Accuracy Analysis of Parcel Surveying by RTK-GPS and RTK-GPS/GLONASS (RTK-GPS와 RTK-GPS/GLONASS에 의한 일필지 측랑의 정확도 분석)

  • Hong, Sung-Eon
    • Spatial Information Research
    • /
    • v.14 no.2 s.37
    • /
    • pp.211-221
    • /
    • 2006
  • GLONASS(Global NAvigation Satellite System) using the satellite information on 19,100km altitude supplies the location information similar method with GPS. Therefore, many researches study in combination GPS and GLONASS. This research compares with deciding coordination of one unit parcel using RTK-GPS and RTK-GPS/CLONASS. Then we examine the possibility of RTK-GPS/GLONASS for determining parcel coordinate.

  • PDF

Requirement Analysis and Conceptual Design of GNSS Digitized IF Signal Simulator (위성항법 이산화 IF 신호 시뮬레이터 요구사항분석 및 개념 설계)

  • Lee, Sang-Uk;Ju, In-Won;Lee, Jae-Eun
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.1
    • /
    • pp.41-47
    • /
    • 2007
  • Software GNSS digitized IF signal simulator is being developed by ETRI as a part of development of software-based GNSS Test & evaluation Facility which will provide test and evaluation environment for various software level application and navigation algorithm in GNSS. Software GNSS IF signal simulator will provide digitized GNSS signal including GPS and Galileo. The requirement analysis and conceptual design for the Software GNSS IF signal simulator is presented in this paper.

  • PDF

Analysis of Ionospheric Spatial Gradient for Satellite Navigation Systems (위성항법시스템 적용을 위한 전리층 지연값 기울기 연구)

  • Kim, Jeong-Rae;Yang, Tae-Hyoung;Lee, Eun-Sung;Jun, Hyang-Sig
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.898-904
    • /
    • 2006
  • Ionospheric storms, caused by the interaction between Solar and geomagnetic activities, may degrade the differential GNSS(Global Navigation Satellite Systems) performance significantly, and the importance of the ionospheric storm research is growing for the GBAS(Ground-Based Augmentation System) and SBAS(Satellite-Based Augmentation System) development. In order to support Korean GNSS augmentation system development, a software tool for analyzing the regional ionosphere is being developed and its preliminary results are discussed. After brief description of the ionosphere and ionospheric storm, the research topics on the GBAS applications are discussed. The need for ionospheric spatial gradient analysis is described and some results on the ionospheric spatial gradient during recent storm periods are discussed.

Error Analysis of Inter-Frequency Bias Estimation in Global Navigation Satellite System Signals (위성항법 신호 이중주파수간 편이 추정오차 분석)

  • Kim, Jeongrae;Noh, Jeong Ho;Lee, Hyung Keun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.3
    • /
    • pp.16-21
    • /
    • 2012
  • Global navigation satellite systems (GNSS) use dual frequency signals to remove ionosphere delay effect. GNSS receivers have their own biases, called inter-frequency bias (IFB) between dual frequencies due to differential signal delays in receiving each frequency codes. The IFB degrades pseudo-range and ionosphere delay accuracies, and they must be accurately estimated. Simultaneous estimation of ionosphere map and IFB is applied in order to analyze the IFB estimation accuracy and variability. GPS network data in Korea is used to compute each receiver's IFB. Accuracy changes due to ionosphere model changes is analyzed and the effect of external GNSS satellite IFB on the receiver IFB is analyzed.