• Title/Summary/Keyword: Satellite Control

Search Result 1,495, Processing Time 0.04 seconds

JPEG Performance analysis for COMS LHGS Design (통신해양 기상위성 LHGS 설계를 위한 JPEG 성능 분석)

  • Bae Hee-Jin;Seo Seok-Bae;Ahn Sang-Il;Jung Sung-Chul;Kim Eun-Kyou
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.381-385
    • /
    • 2006
  • 2008년 발사를 목표로 개발되고 있는 통신해양기상위성(COMS: Communication, Ocean and Meteorological Satellite)는 기상 관측과 해양 관측 임무 및 통신 임무까지 수행하는 정지궤도 위성이다. 통신해양기상위성은 크게 탑재체와 지상국으로 나눌 수 있고 지상국은 다시 통신 임무를 위한 CTES(Communication Test Earth Station), 해양/기상 임무를 위한 IDACS(Image Acquisition and Control System), 그리고 위성 관제와 운영을 위한 SGCS(Satellite Ground Control System)로 구분된다. 이 중 IDACS의 서브시스템 중 하나인 LHGS(LRIT/HRIT Generation Subsystem)는 LRIT/HRIT(Low Rate Information Transmission/High Rate Information Transmission)를 생성하고 배포하는 기능을 가지고 있다. 관측 종료 후 LRIT/HRIT 전송 완료까지 15분 이내로 이루어져야 한다는 기상청의 요구사항을 만족하기 위해서 JPEG 압축 시간도 중요한 요소로 고려되어야 한다. 그래서 본 논문에서는 MTSAT에서 받은 LRIT/HRIT의 자료 처리를 바탕으로 lossless JPEG와 lossy JPEG의 압축 시간을 측정하여 압축률을 비교하여 성능 분석을 해보기로 한다. 이렇게 도출해낸 수치자료는 COMS LHGS 설계에 활용할 수 있다.

  • PDF

Launch and Early Orbit Phase Simulations by using the KOMPSAT Simulator

  • Lee, Sanguk;Park, Wan-Sik;Lee, Byoung-sun;Lee, Ho-Jin;Park, Hanjun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.33-36
    • /
    • 1999
  • The KOMPSAT, which is scheduled to be launched by Taurus launch vehicle in late November of 1999, will be in a sun-synchronous orbit with an altitude of 685km, eccentricity of 0.001, inclination of 98deg and local time of ascending node of 10:50 a.m. Electronics and Telecommunications Research Institute and Daewoo Heavy Industry had jointly developed a KOMPSAT Simulator as a component of the KOMPSAT Mission Control Element. The MCE had been delivered to Korea Aerospace Research Institute for the KOMPSAT ground operation. It is being used for training of KOMPSAT ground station personnel. Each of satellite subsystems and space environment were mathematically modeled in the simulator. To verify the overall function of KOMPSAT simulator, a Launch and Early Orbit Phase(LEOP) operation simulations have been performed. The simulator had been verified through various tests such as functional level test, subsystem test, interface test, system test, and acceptance test. In this paper, simulation results for LEOP operations to verify flight software adapted into simulator, satellite subsystem models and environment models are presented.

  • PDF

Ground Station Design for STSAT-3

  • Kim, Kyung-Hee;Bang, Hyo-Choong;Chae, Jang-Soo;Park, Hong-Young;Lee, Sang-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.283-287
    • /
    • 2011
  • Science and Technology Satellite-3 (STSAT-3) is a 150 kg class micro satellite based with the national space program. The STSAT-3 system consists of a space segment, ground segment, launch service segment, and various external interfaces including additional ground stations to support launch and early operation phases. The major ground segment is the ground station at the Satellite Technology Research Center, Korea Advanced Institute of Science and Technology site. The ground station provides the capability to monitor and control STSAT-3, conduct STSAT-3 mission planning, and receive, process, and distribute STSAT-3 payload data to satisfy the overall missions of STSAT-3. The ground station consists of the mission control element and the data receiving element. This ground station is designed with the concept of low cost and high efficiency. In this paper, the requirements and design of the ground station that has been developed are examined.

STATION-KEEPING MANEUVER SIMULATION FOR THE COMMUNICATION, OCEAN AND METEOROLOGICAL SATELLITE

  • Kim Young-Rok;Lee Byoung-Sun;Bang Hyo-Joon;Choi Kyu-Hong;Park Sang-Young
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.251-253
    • /
    • 2004
  • Automated east/west and north/south station-keeping maneuvers were simulated for the geostationary COMS (Communication, Ocean and Meteorological Satellite) satellite that will be launched around year 2008, The satellite has to be maintained within ${\pm}0.05^{\circ}$ at the nominal longitude of $128.2^{\circ}\;E$. The general perturbation method was used to keep the position of the geostationary satellite. Weekly based east/west and biweekly based north/south station-keeping maneuvers were investigated. The sun pointing perigee control method and two-bum strategy were used for the east/west station-keeping maneuver. Switching the right ascension of the ascending node to descending node was adopted for the north/south station-keeping maneuver. One year station-keeping maneuver was demonstrated and various station-keeping orbital parameters were analyzed.

  • PDF

A study on the tracking algorithm of satellite antenna system (위성 안테나 시스템의 추적 알고리즘에 관한 연구)

  • 강우신;조창호;이상철;조도현;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.128-128
    • /
    • 2000
  • An antenna tracking technique, referred to as "step track", is commonly used in communication applications. In this paper, an algorithm to improve the step-tracking technique for satellite tracking is proposed. We suggest a method by which the antenna scans the azimuth, detects the satellite signal without the position information, and points quickly to the direction receiving the signal of peak level. After reaching the peak level, the step-track system maintains enough signal levels to receive satellite broadcasting normally. Performance of the Tracking Algorithm proposed in this paper are verified with simulation.

  • PDF

Performance Analysis of Spatial Adaptive Null Pattern Control Algorithm for 5 Elements Array Antenna (5소자 배열안테나의 공간 적응 널패턴 제어 알고리즘 성능분석)

  • Ahn, Seung-Gwan;Lee, Sang-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.313-319
    • /
    • 2010
  • GNSS receiver which uses the weak satellite signal is very vulnerable to the intentional jamming or non-intentional electromagnetic interference. One of the best method to overcome this disadvantage is to use an adaptive array antenna which has the capability of beamforming or nulling to the certain direction. In this paper, the performance of spatial adaptive null pattern control algorithm of 5 element array antenna is analyzed. A control algorithm which is designed in the 5 element array antenna is OPM(Output Power Minimization) which is eliminating the correlation characteristics between a reference antenna and the others. This algorithm can be applied effectively to the satellite navigation's CRPA because the satellite direction is not considered and GNSS signal power is below the thermal noise. The feature of the OPM algorithm is analyzed and the performance is compared with other null pattern control algorithm.

Collision Avoidance Using Linear Quadratic Control in Satellite Formation Flying

  • Mok, Sung-Hoon;Choi, Yoon-Hyuk;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.351-359
    • /
    • 2010
  • This paper proposes a linear system control algorithm with collision avoidance in multiple satellites. Consideration of collision avoidance is augmented by adding a weighting term in the cost function of the original tracking problem in linear quadratic control (LQC). Because the proposed algorithm relies on a similar solution procedure to the original LQC, its inherent advantages, including gain-robustness and optimality, are preserved. To confirm and visualize the derived algorithm, a simple example of two-vehicle motion in the two-dimensional plane is illustrated. In addition, the proposed collision avoidance control is applied to satellite formation flying, and verified by numerical simulations.

STABILITY REGION ESTIMATES FOR THE SDRE CONTROLLED ATTITUDE SYSTEMS IN SATELLITE FORMATION FLYING

  • Chang, In-Su;Park, Sang-Young;Choi, Kyu-Hong
    • Bulletin of the Korean Space Science Society
    • /
    • 2007.10a
    • /
    • pp.135-138
    • /
    • 2007
  • The present work is to estimate the stability region of the State-Dependent Riccati Equation (SDRE) controlled system, which is used for a decentralized coordinated attitude control in satellite formation flying. In this research, currently emerging methods which estimate region of attraction for the SDRE controllers are introduced and the methods are applied to attitude control systems. The results guarantee the stability of the given decentralized coordinated attitude control system in satellite formation flying.

  • PDF

Power Control & Distribution Unit Development for Bus Power Control of Communication Satellite with Large Capacity (대용량 통신위성 전력조절을 위한 전력제어장치개발)

  • Choi Jaedong
    • Proceedings of the KIPE Conference
    • /
    • 2004.11a
    • /
    • pp.85-89
    • /
    • 2004
  • This paper presents Power Control and Distribution Unit development of GEO satellite with 3kW power output. The sensing error of bus voltage produce control signal of the shunt switch assembly and battery power converter, and the tolerance of error signals generated decide the stability of proposed system. The dynamic characteristics of main bus according to the load changing and the control logic of FPGA are simulated. In order to verify the proposed design, the simulation and experimental results for solar array shunt switch, battery power converter and bus controller are shown.

  • PDF