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Abstract

This paper proposes a linear system control algorithm with collision avoidance in multiple satellites. Consideration of collision 

avoidance is augmented by adding a weighting term in the cost function of the original tracking problem in linear quadratic 

control (LQC). Because the proposed algorithm relies on a similar solution procedure to the original LQC, its inherent advantages, 

including gain-robustness and optimality, are preserved. To confirm and visualize the derived algorithm, a simple example of 

two-vehicle motion in the two-dimensional plane is illustrated. In addition, the proposed collision avoidance control is applied 

to satellite formation flying, and verified by numerical simulations.
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1. Introduction

Linear quadratic control (LQC) is a well-known control 

algorithm in the area of linear systems control. LQC 

originated from mean-square filtering, researched by Wiener 

in 1940s (Wiener, 1948). The LQC problem is based upon 

linear systems, and the cost function of the performance 

is constructed in the form of quadratic terms which track 

performance and control efforts. An objective in LQC entails 

cost minimizing, and the corresponding control input 

solution can be obtained by the well-known Riccati equation. 

In the solution procedure, various methods can be used; the 

Hamilton-Jacobi optimization equation is used to derive the 

Riccati equation.

The obtained solution provides gain-robustness and global 

optimality performance (Dorato et al., 1995). Additionally, 

because of such advantages, the LQC algorithm has been 

applied to various areas such as ground-vehicles, missions, 

aircraft, and spacecraft (Fravolini et al., 2003; Gribble, 1993; 

Lovren and Tomic, 1994; Plumlee and Bevly, 2004; Psiaki, 

2001; Ridgely et al., 1987).

The LQC solution was originally derived in a regulating 

problem, which is called the linear quadratic regulator 

(LQR). The regulating problem specifies that the desired 

state is zero, and the corresponding controller maintains the 

vehicle state at zero. To apply the LQC solution in a tracking 

problem, which has a non-zero desired trajectory, the 

disturbance-rejection problem was considered by modifying 

system dynamics (Anderson and Moore, 1990; Dorato et al., 

1995).

This study proposes a control algorithm that adds collision 

avoidance to the original LQC tracking problem. To achieve 

this goal, an additional term is inserted into the cost function 

to account for a collision avoidance effect. A detailed 

derivation of the proposed algorithm is introduced in Section 

3. One of the important changes in the new approach is the 

off-diagonal term of the weight matrix on state. This term is 

not zero, which is a measure taken in order to implement the 

collision avoidance constraint. To prevent equalization of the 

position between vehicles, the cost function should consider 

the correlation and dependency between state variables. As 

a result, the weight matrix on states becomes a non-diagonal 

matrix, which is easy to implement by using commercial 

software tools such as MATLAB.

After performing the derivation of the optimal control 

history for a multiple-vehicle case, the proposed algorithm 
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is applied to a satellite formation flying (SFF) mission. SFF 

is a combined phrase consisting of the words satellite and 

formation flying. SFF has recently received much attention 

(Clohessy and Wiltshire, 1960; Hadaegh et al., 2000; 

McCambish et al., 2009; Speyer, 1979; Xing et al., 2000). 

As with other concerning satellite missions, all guidance, 

navigation, and control theories are necessary for SFF. 

Additionally, among guidance and control parts, the collision 

avoidance problem is an important issue because multiple 

satellites are operating.

Many researchers have studied the collision avoidance 

problem in SFF. Slater et al. (2006) referred to the collision 

probability function, and used an impulsive control to 

maintain a safe distance between spacecrafts. Wang 

and Schaub (2008) attempted to avoid collision using 

electrostatic (coulomb) forces with a Lyapunov-based 

control law. And, Lim et al. (2005) used potential functions to 

prevent collision. This paper proposes a collision avoidance 

algorithm by modifying the original LQC tracking problem. 

The conventional LQC provides desirable qualities such as 

gain-robustness and optimality; these properties can be 

preserved in the proposed algorithm because the proposed 

algorithm is based on the LQC problem. In addition, an 

optimal solution can be obtained by simple numerical 

integration only.

This paper is presented in the following manner. In 

Section 2, introductory material of LQR is presented. The 

main control algorithm and its derivation are introduced 

in Section 3. Finally, the algorithm’s application to SFF with 

numerical simulation is discussed in Section 4.

2. Linear Quadratic Control Algorithm

In this chapter, the LQC problem is briefly reviewed. 

Before proceeding, the general LQR algorithm including 

disturbance rejection will be introduced. In the next chapter, 

a collision avoidance measurement term is augmented to 

the linear control framework introduced here.

2.1 Linear quadratic regulator

The LQC problem originated from a mean-square filtering 

algorithm by Wiener. The LQC algorithm manages a linear 

system, and its performance is measured in quadratic form. 

A linear system is a system in which the system equation is 

constructed by linear operators. Quadratic form indicates 

cost terms, like the tracking performance of states and control 

effort of an actuator, are represented by the quadratic errors.
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where V is a performance measure, x and u  are the state 

and control input of corresponding linear system ẋ=Ax+Bu, 
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referred to as the dynamic programming approach (Bellman, 

1952).
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the cost function using Eq. (8),

 

 

The ( ) ( )T
i j i jx x x x− −  term indicates the square 

of distance between vehicles, and the term ,CA ijq  is 

used as a weighted term for collision avoidance. 
For a simple case, the number of vehicles is 

assumed to be two, which means 2N = ; and, the 
vehicles are considered to be moving along a one-
dimensional axis. The necessary information can be 
summarized as four state variables, 

[ ]1 2 1 2( ) Tx t x x x x= . Finally, we add collision 
avoidance terms to the cost function using Eq. (8), 

 

,
1

2 2 2
1 1 2 2 3 1 2

( , , ) ( , , )

( ) ( )

( )

CA

N N
T

CA ij i j i j
i j i

l x u t l x u t

q x x x x

A x A x A x x
= >

=

− − −

= + − −

∑∑  (9) 

 

where 1A , 2A   and 3A  are weight terms for each 

cost. 1A  is a weight that regulates the performance 

of vehicle 1,  2A  is a weight that regulates the 

performance of vehicle 2, and  3A  is a weight term 
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where 1 ( )dx t   and 2 ( )dx t  are the desired 

trajectories of each vehicle. 
In Eq. (11), it should be noted that the last 
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has a quadratic form with a negative sign. This 
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algorithm which is derived in a quadratic manner. 
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a quadratic term, an inverse of the distance term 
like 1( )i jx x −−  or a potential function with an 
exponential term is used to prevent collision. In this 
manner, collision could be avoided regardless of 
the shape of the desired trajectory. However, an 
optimal property such as the minimizing control 
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In addition, if optimal equations could be 
constructed, the equations are not easily solved. In 
this paper, the proposed algorithm does not 
guarantee collision avoidance for some cases in 
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and confirmation of the obtained control input 
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However, the vehicles’ tracking errors from the desired 

trajectory ξ(t)=x(t)-xd(t) is adopted as state variables, rather 

than the vehicles’ positions and velocities directly. The 

tracking problem can then be converted into a regulating 

problem as given by Eq. (7). And, a new state representing 

the tracking error becomes ξ(t)=[x1-x1d x2-x2d ẋ1-ẋ1d ẋ2-ẋ2d]T.

Because state variables are different, the cost function l(ξ, 

u, t) should also be changed.
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where 1 ( )dx t   and 2 ( )dx t  are the desired 
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term, which is used to prevent collision avoidance, 
has a quadratic form with a negative sign. This 
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algorithm which is derived in a quadratic manner. 
In general collision avoidance research, rather than 
a quadratic term, an inverse of the distance term 
like 1( )i jx x −−  or a potential function with an 
exponential term is used to prevent collision. In this 
manner, collision could be avoided regardless of 
the shape of the desired trajectory. However, an 
optimal property such as the minimizing control 
effort is hard to obtain when those terms are used. 
In addition, if optimal equations could be 
constructed, the equations are not easily solved. In 
this paper, the proposed algorithm does not 
guarantee collision avoidance for some cases in 
which different trajectories or systems are desired, 
and confirmation of the obtained control input 
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From Eq. (12) and Eq. (13), one can express 

the collision avoidance effect as a combination of a 
matrix and vector. Finally, the optimal input 
history is derived using the Hamilton-Jacobi 
optimization equation, Eq. (2). Because this 
problem manages the tracking problem, the 
following form for the performance measure is 
introduced, i.e., *( , ) ( ) 2 ( ) ( )T TV t P t b t c tξ ξ ξ ξ= + + . 
By substituting all of the terms into Eq. (2), the 
following equations are derived. 
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After expanding the above equations and 

collecting the quadratic terms, linear terms and 
state-independent terms respectively, the results 
can be summarized as, 
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where ( )w t  comes from a desired trajectory 
produced by converting the tracking problem into 
the regulating problem, ( ) d dw t Ax x= − . And, the 
corresponding optimal control *( )u t  is equivalent 
to the original tracking problem solution. 
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comparison of the two results is summarized in 
Table 1. One can see that there is an additional 
term ( )r t−  in the ( )b t  equation for the solution of 
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changes the ( )b t  history, consequently affecting 
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From Eq. (12) and Eq. (13), one can express 

the collision avoidance effect as a combination of a 
matrix and vector. Finally, the optimal input 
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optimization equation, Eq. (2). Because this 
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Control u*(t)=−R−1BT[P(t)x+b(t)]
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rejection solution, Eq. (5). A comparison of the two results 

is summarized in Table 1. One can see that there is an 

additional term −r(t) in the b(t) equation for the solution of 

collision avoidance considered cell. This term changes the 

b(t) history, consequently affecting the control history u*(t).

3.3 Multiple vehicle case

Until now, cases involving two-vehicles have only been 

considered, rather than the multiple-vehicle cases in which 

N≥3. However, we can generalize the results of the above 

sub-chapters into a multiple vehicle case without complex 

derivation.

Firstly, note that the solution for the performance measure 

coefficients P(t), b(t), and c(t) in Eq. (15) are not changed, 

as the number of vehicles change. The weight matrix and 

coefficients of the cost function l(ξ, u), which are Q, r(t) and 

s(t) in Eq. (13), are changed.

To visualize the tendency of the change in Q, r(t), s(t), a 

three-vehicle case solution is represented in Eq. (17). We 

can see that Eq. (13) and Eq. (17) exhibit similarities in the 

results.
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Finally, a generalized form of the multiple-

vehicle case can be obtained, as shown in Eqs. (18) 
and (19). 
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3.4 Example: simple 2-dimensional 
tracking problem 

Before applying the derived control 
algorithm to real practical problems, such as SFF, a 
simple problem is analyzed to demonstrate the 

validity of the control law. In a two-dimensional 
space, two-vehicles are used, requiring no 
additional forces except control acceleration ( )u t . 
Then, the system kinematics equations are 
formulated as given by Eq. (20). 
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where [ ]1 2 1 2 2 2 1 2

Tx x x y y x x y y=  and 

1 2 1 2

T

x x y yu u u u u⎡ ⎤= ⎣ ⎦ . In the problem formulation, 
the cost function coefficients and initial conditions 
are defined in Table 2. 

Figures 1-4 display the simulation results of 
this condition. Fig. 1 shows a vehicle trajectory 
from its initial position to the final position. The 
solid line represents a trajectory with the original 
tracking algorithm, and the dashed line represents 
the trajectory with the derived algorithm, 
considering collision avoidance between the 
vehicles. To prevent collision between vehicles, 
vehicles do not follow a pre-determined desired 
trajectory. In Fig. 2, one can confirm that the 
distance between vehicles becomes larger when 
collision avoidance is added. In addition, Figs. 3 
and 4 show corresponding tracking errors between 
the present position and the desired trajectory. 

 
Table 2. Simulation parameters 

Variables Symbol Value  
Weighting on tracking 
and collision avoidance 1 2 3, ,A A A  50  

Weighting on control R  30  
Final time T  7,000 sec 

Vehicle 1, init. position 1 1( , )d d initx y [ ]2, 2−  m 

Vehicle 2, init. position 2 2( , )d d initx y [ ]2, 2− −  m 

Vehicle 1, fin.  position 1 1( , )d d finalx y [ ]2, 2−  m 

Vehicle 2, fin.  position 2 2( , )d d finalx y [ ]1.5, 1  m 

 
Figure 5 shows the change of vehicle 

trajectory as the collision avoidance weighting 
parameter 3A  increases. As the weighting 
parameter 3A  increases, collision avoidance 
between vehicles becomes more important than the 
tracking of a desired trajectory. Thus, the distance 
between the vehicles tends to become longer in the 
time history. 
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x x y yu u u u u⎡ ⎤= ⎣ ⎦ . In the problem formulation, 
the cost function coefficients and initial conditions 
are defined in Table 2. 

Figures 1-4 display the simulation results of 
this condition. Fig. 1 shows a vehicle trajectory 
from its initial position to the final position. The 
solid line represents a trajectory with the original 
tracking algorithm, and the dashed line represents 
the trajectory with the derived algorithm, 
considering collision avoidance between the 
vehicles. To prevent collision between vehicles, 
vehicles do not follow a pre-determined desired 
trajectory. In Fig. 2, one can confirm that the 
distance between vehicles becomes larger when 
collision avoidance is added. In addition, Figs. 3 
and 4 show corresponding tracking errors between 
the present position and the desired trajectory. 

 
Table 2. Simulation parameters 

Variables Symbol Value  
Weighting on tracking 
and collision avoidance 1 2 3, ,A A A  50  

Weighting on control R  30  
Final time T  7,000 sec 

Vehicle 1, init. position 1 1( , )d d initx y [ ]2, 2−  m 

Vehicle 2, init. position 2 2( , )d d initx y [ ]2, 2− −  m 

Vehicle 1, fin.  position 1 1( , )d d finalx y [ ]2, 2−  m 

Vehicle 2, fin.  position 2 2( , )d d finalx y [ ]1.5, 1  m 

 
Figure 5 shows the change of vehicle 

trajectory as the collision avoidance weighting 
parameter 3A  increases. As the weighting 
parameter 3A  increases, collision avoidance 
between vehicles becomes more important than the 
tracking of a desired trajectory. Thus, the distance 
between the vehicles tends to become longer in the 
time history. 
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3.4 Example: simple 2-dimensional 
tracking problem 

Before applying the derived control 
algorithm to real practical problems, such as SFF, a 
simple problem is analyzed to demonstrate the 

validity of the control law. In a two-dimensional 
space, two-vehicles are used, requiring no 
additional forces except control acceleration ( )u t . 
Then, the system kinematics equations are 
formulated as given by Eq. (20). 
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formulated as given by Eq. (20). 
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are defined in Table 2. 

Figures 1-4 display the simulation results of 
this condition. Fig. 1 shows a vehicle trajectory 
from its initial position to the final position. The 
solid line represents a trajectory with the original 
tracking algorithm, and the dashed line represents 
the trajectory with the derived algorithm, 
considering collision avoidance between the 
vehicles. To prevent collision between vehicles, 
vehicles do not follow a pre-determined desired 
trajectory. In Fig. 2, one can confirm that the 
distance between vehicles becomes larger when 
collision avoidance is added. In addition, Figs. 3 
and 4 show corresponding tracking errors between 
the present position and the desired trajectory. 
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where x=[x1 x2 y1 y2 ẋ2 ẋ2 ẏ1 ẏ2]T and u=[ux1 ux2 uy1 uy2]. In the 

problem formulation, the cost function coefficients and 

initial conditions are defined in Table 2.

Figures 1-4 display the simulation results of this condition. 

Fig. 1 shows a vehicle trajectory from its initial position to 

the final position. The solid line represents a trajectory 

with the original tracking algorithm, and the dashed line 

represents the trajectory with the derived algorithm, 

considering collision avoidance between the vehicles. To 

prevent collision between vehicles, vehicles do not follow a 

pre-determined desired trajectory. In Fig. 2, one can confirm 

that the distance between vehicles becomes larger when 

collision avoidance is added. In addition, Figs. 3 and 4 show 

corresponding tracking errors between the present position 
 

 

 
 
 
 
 
 
 
 

 
Fig. 1. Vehicle trajectory. 

 
Fig. 2. Tracking error in X-axis. 
 
4. Satellite Formation Flying 

 
In this chapter, the control law derived in 

the previous chapter is applied to a SSF problem. 
SSF has been investigated for many years, and the 
Clohessy and Wiltshire (CW) equation is generally 
employed as the linearized equation for relative 
dynamics. By using the CW equation, an 
application of collision avoidance algorithm is 
demonstrated, and the corresponding simulation 
results are presented. 
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SSF is commonly constructed by a chief 

satellite and a deputy satellite. The amount of 
deputy satellites present can be more than one, and 
the actual number is determined by mission 
characteristics. The coordinated frame (local-
vertical-local-horizontal [LVLH] frame) has an 
origin at the center of the chief satellite and the 
direction of each axis is drawn in Fig. 6. The ( , )x y  
axis together make an in-plane motion, and z  axis 
represents an out-of-plane motion of the deputy 
satellite. Eq. (21) shows the general non-linear 
relative equations of motion. 

 
 
 
 
 
 

Fig. 1. Vehicle trajectory.

Table 2. Simulation parameters

Variables Symbol Value
Weighting on tracking
and collision avoidance A1, A2, A3 50

Weighting on control R 30
Final time T 7,000 sec
Vehicle 1, init. position (x1d, y1d)init [−2, 2] m

Vehicle 2, init. position (x2d, y2d)init [−2, −2] m

Vehicle 1, fin.  position (x1d, y1d)final [2, −2] m

Vehicle 2, fin.  position (x2d, y2d)final [1.5, 1] m
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and the desired trajectory.

Figure 5 shows the change of vehicle trajectory as the 

collision avoidance weighting parameter A3 increases. As 
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where ( , , )x y z  are the components of the relative 
position of the deputy satellite in the LVLH frame, 

cθ  is the true latitude angle of the chief satellite, 
and cr  stands for the radius of the chief satellite. 

Eq. (21) has non-linear terms such as a 
square term. CW  
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developed a linearized equation of Eq. (21) using 
assumptions such that the chief satellite travels in a 
circular orbit (Clohessy and Wiltshire, 1960). 

 

 

2

2

2 3 0
2 0

0

x ny n x
y nx
z n z

− − =
+ =

+ =

 (1) 

 
Eq. (22) is the CW equation, also known as 

Hill's equation. In Eq. (22), the term stands for the 
angular rate of the chief satellite. Using the linear 
equation of SSF, CW equation, one can apply the 
derived linear control algorithm that were 
presented in the previous chapter. 

Fig. 5. Vehicle trajectory along various collision avoidance weighting 3A . 
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vehicles tends to become longer in the time history.

4. Satellite Formation Flying

In this chapter, the control law derived in the previous 

chapter is applied to a SSF problem. SSF has been investigated 

for many years, and the Clohessy and Wiltshire (CW) 

equation is generally employed as the linearized equation for 

relative dynamics. By using the CW equation, an application 

of collision avoidance algorithm is demonstrated, and the 

corresponding simulation results are presented.

4.1 Relative equations of motion

SSF is commonly constructed by a chief satellite and a 

deputy satellite. The amount of deputy satellites present can 

be more than one, and the actual number is determined 

by mission characteristics. The coordinated frame (local-

vertical-local-horizontal [LVLH] frame) has an origin at the 

center of the chief satellite and the direction of each axis is 

drawn in Fig. 6. The (x, y) axis together make an in-plane 

motion, and z axis represents an out-of-plane motion of 

the deputy satellite. Eq. (21) shows the general non-linear 

relative equations of motion.
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where (x, y, z) are the components of the relative position 

of the deputy satellite in the LVLH frame, θc is the true latitude 

angle of the chief satellite, and rc stands for the radius of the 

chief satellite.

Eq. (21) has non-linear terms such as a square term. CW 

developed a linearized equation of Eq. (21) using 

assumptions such that the chief satellite travels in a circular 
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Eq. (22) is the CW equation, also known as 

Hill's equation. In Eq. (22), the term stands for the 
angular rate of the chief satellite. Using the linear 
equation of SSF, CW equation, one can apply the 
derived linear control algorithm that were 
presented in the previous chapter. 
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4.2 Simulation results

The application of the linear optimal control algorithm 

derived in the previous chapter is explored in this sub-

chapter. A two-dimensional space, (x, y) plane, is employed 

for the simulation. Because in-plane motion (x, y) is de-

coupled from the out-of-plane motion z axis, the in-plane 

motion only case is selected. Three satellites are assumed 

for the simulation, with final positions producing a circular 

formation around a chief satellite.
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The application of the linear optimal control 

algorithm derived in the previous chapter is 
explored in this sub-chapter. A two-dimensional 
space, ( , )x y  plane, is employed for the simulation. 
Because in-plane motion ( , )x y  is de-coupled from 
the out-of-plane motion z  axis, the in-plane 
motion only case is selected. Three satellites are 
assumed for the simulation, with final positions 
producing a circular formation around a chief 
satellite. 

Details for the cost function coefficients 
and the initial condition of each satellite are 
presented in Table 3. Figures 7-10 represent 
resultant plotting of the SSF control simulation. 
Figure 7 presents satellite trajectories from initial 
positions to final mission destinations. No 
weighting term was added for the collision 
avoidance in the Fig. 7 simulation, but Fig. 8 
considers collision avoidance for trajectory 
generation. In Fig. 8, satellites enter the final 
circular formation by detouring non-direct 
guidance as Fig. 7, to prevent collision between 
satellites. 

Figures 9 and 10 present the corresponding 
distance between satellites as well as the 
acceleration input. Figure 9 shows the distance 
between each satellite, which is 1 2 2 3 1 3, ,d d d− − − . One 
can see that the distances became longer than the 
original tracking history case. Finally, Fig. 10 
displays the control acceleration input history in 
each axis for the first satellite. 

 
Table 3. Simulation parameters 

Variables Symbol Value  
Weighting on tracking 1 2 3, ,A A A  50  

and collision avoidance
Weighting on control R  30  
Final time T  7,000 sec 

Vehicle 1, init. position 1 1( , )d d initx y [ ]2, 2−  m 

Vehicle 2, init. position 2 2( , )d d initx y [ ]2, 2− −  m 

Vehicle 1, fin.  position 1 1( , )d d finalx y [ ]2, 2−  m 

Vehicle 2, fin.  position 2 2( , )d d finalx y [ ]1.5, 1  m 

 
5. Conclusions 

 
In this paper, a linear control algorithm was 

derived for the tracking problem by solving the 
Hamilton-Jacobi optimization equation. To avoid 
collision between vehicles, an additional weighting 
term was introduced when constructing the cost 
function. The corresponding optimal control 
solution maintained a similar form as the original 
LQR tracking problem, which does not consider 
collision avoidance. The only difference was that 
extra terms were added in the differential equations 
of the performance measure coefficients. After 
deriving the control history solution, a simple 
example involving two vehicles was considered. In 
addition, the application of the control algorithm to 
SSF mission was analyzed, and numerical 
simulation was presented. Using this proposed 
algorithm, SSF problems as well as other problems 
involving multiple-vehicles could consider 
collision avoidance in the tracking problems. 
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Details for the cost function coefficients and the initial 

condition of each satellite are presented in Table 3. Figures 

7-10 represent resultant plotting of the SSF control simulation. 

Figure 7 presents satellite trajectories from initial positions 

to final mission destinations. No weighting term was added 

for the collision avoidance in the Fig. 7 simulation, but Fig. 

8 considers collision avoidance for trajectory generation. 

In Fig. 8, satellites enter the final circular formation by 

detouring non-direct guidance as Fig. 7, to prevent collision 

between satellites.

Figures 9 and 10 present the corresponding distance 

between satellites as well as the acceleration input. Figure 9 

shows the distance between each satellite, which is d1-2, d2-3, 

d1-3. One can see that the distances became longer than the 

original tracking history case. Finally, Fig. 10 displays the 

control acceleration input history in each axis for the first 

satellite.

5. Conclusions

In this paper, a linear control algorithm was derived 

for the tracking problem by solving the Hamilton-Jacobi 

optimization equation. To avoid collision between vehicles, 

an additional weighting term was introduced when 

constructing the cost function. The corresponding optimal 

control solution maintained a similar form as the original 

LQR tracking problem, which does not consider collision 

avoidance. The only difference was that extra terms were 

added in the differential equations of the performance 

measure coefficients. After deriving the control history 

solution, a simple example involving two vehicles was 

considered. In addition, the application of the control 
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algorithm to SSF mission was analyzed, and numerical 

simulation was presented. Using this proposed algorithm, 

SSF problems as well as other problems involving multiple-

vehicles could consider collision avoidance in the tracking 

problems.
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