• Title/Summary/Keyword: Satellite Anomaly

Search Result 117, Processing Time 0.025 seconds

Variation of the Hemispheric Asymmetry of the Equatorial Ionization Anomaly with Solar Cycle

  • Kwak, Young-Sil;Kil, Hyosub;Lee, Woo Kyoung;Yang, Tae-Yong
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.159-168
    • /
    • 2019
  • In solstices during the solar minimum, the hemispheric difference of the equatorial ionization anomaly (EIA) intensity (hereafter hemispheric asymmetry) is understood as being opposite in the morning and afternoon. This phenomenon is explained by the temporal variation of the combined effects of the fountain process and interhemispheric wind. However, the mechanism applied to the observations during the solar minimum has not yet been validated with observations made during other periods of the solar cycle. We investigate the variability of the hemispheric asymmetry with local time (LT), altitude, season, and solar cycle using the electron density taken by the CHAllenging Minisatellite Payload satellite and the global total electron content (TEC) maps acquired during 2001-2008. The electron density profiles provided by the Constellation Observing System for Meteorology, Ionosphere, and Climate satellites during 2007-2008 are also used to investigate the variation of the hemispheric asymmetry with altitude during the solar minimum. During the solar minimum, the location of a stronger EIA moves from the winter hemisphere to the summer hemisphere around 1200-1400 LT. The reversal of the hemispheric asymmetry is more clearly visible in the F-peak density than in TEC or in topside plasma density. During the solar maximum, the EIA in the winter hemisphere is stronger than that in the summer hemisphere in both the morning and afternoon. When the location of a stronger EIA in the afternoon is viewed as a function of the year, the transition from the winter hemisphere to the summer hemisphere occurs near 2004 (yearly average F10.7 index = 106). We discuss the mechanisms that cause the variation of the hemispheric asymmetry with LT and solar cycle.

Relationship between temporal variability of TPW and climate variables (가강수량의 변화패턴과 기후인자와의 상관성 분석)

  • Lee, Darae;Han, Kyung-Soo;Kwon, Chaeyoung;Lee, Kyeong-sang;Seo, Minji;Choi, Sungwon;Seong, Noh-hun;Lee, Chang-suk
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.3
    • /
    • pp.331-337
    • /
    • 2016
  • Water vapor is main absorption factor of outgoing longwave radiation. So, it is essential to monitoring the changes in the amount of water vapor and to understanding the causes of such changes. In this study, we monitor temporal variability of Total Precipitable Water (TPW) which observed by satellite. Among climate variables, precipitation play an important part to analyze temporal variability of water vapor because it is produced by water vapor. And El $Ni{\tilde{n}}o$ is one of climate variables which appear regularly in comparison with the others. Through them, we analyze relationship between temporal variability of TPW and climate variable. In this study, we analyzed long-term change of TPW from Moderate-Resolution Imaging Spectroadiometer (MODIS) data and change of precipitation in middle area of Korea peninsula quantitatively. After these analysis, we compared relation of TPW and precipitation with El $Ni{\tilde{n}}o$. The aim of study is to research El $Ni{\tilde{n}}o$ has an impact on TPW and precipitation change in middle area of Korea peninsula. First of all, we calculated TPW and precipitation from time series analysis quantitatively, and anomaly analysis is performed to analyze their correlation. As a result, TPW and precipitation has correlation mostly but the part had inverse correlation was found. This was compared with El $Ni{\tilde{n}}o$ of anomaly results. As a result, TPW and precipitation had inverse correlation after El $Ni{\tilde{n}}o$ occurred. It was found that El $Ni{\tilde{n}}o$ have a decisive effect on change of TPW and precipitation.

Multi-scale Correlation Analysis between Sea Level Anomaly and Climate Index through Wavelet Approach (웨이블릿 접근을 통한 해수면 높이와 기후 지수간의 다중 스케일 상관 관계 분석)

  • Hwang, Do-Hyun;Jung, Hahn Chul
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.587-596
    • /
    • 2022
  • Sea levels are rising as a result of climate change, and low-lying areas along the coast are at risk of flooding. Therefore, we tried to investigate the relationship between sea level change and climate indices using satellite altimeter data (Topex/Poseidon, Jason-1/2/3) and southern oscillation index (SOI) and the Pacific decadal oscillation (PDO) data. If time domain data were converted to frequency domain, the original data can be analyzed in terms of the periodic components. Fourier transform and Wavelet transform are representative periodic analysis methods. Fourier transform can provide only the periodic signals, whereas wavelet transform can obtain both the periodic signals and their corresponding time location. The cross-wavelet transformation and the wavelet coherence are ideal for analyzing the common periods, correlation and phase difference for two time domain datasets. Our cross-wavelet transform analysis shows that two climate indices (SOI, PDO) and sea level height was a significant in 1-year period. PDO and sea level height were anti-phase. Also, our wavelet coherence analysis reveals when sea level height and climate indices were correlated in short (less than one year) and long periods, which did not appear in the cross wavelet transform. The two wavelet analyses provide the frequency domains of two different time domain datasets but also characterize the periodic components and relative phase difference. Therefore, our research results demonstrates that the wavelet analyses are useful to analyze the periodic component of climatic data and monitor the various oceanic phenomena that are difficult to find in time series analysis.

REVIEW OF BACK-UP POSSIBILITY ON GYRO ANOMALY OF GEOSYNCHRONOUS SATELLITES USING EXTENDED KALMAN FILTER (확장칼만필터를 이용한 정지궤도위성의 자이로 이상상태 대처 가능성 검토)

  • Park, Young-Woong
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.2
    • /
    • pp.175-186
    • /
    • 2005
  • In this paper, the development of the extended kalman filter(EKF) which is based on Koreasat-3 bus system is introduced and the design result is shown through the simulation. Especially to determine the filter gains for accurate estimation, there is assumed that initial estimated parameters are not changed. But although the satellite performs the attitude control by 2Hz, it is verified that the EKF is running rightly using the changed filter gains. Also some cases are considered using the simulation : with each bias for 4-axis gyro and with gyro each axis failure. It is verified that the designed filter can be used as the back-up about gyro failure.

Effect of the Environmental Conditions on the Structure and Distribution of Pacific Saury in the Tsushima Warm Current Region

  • Gong, Yeong;Suh, Young-Sang
    • Journal of Environmental Science International
    • /
    • v.12 no.11
    • /
    • pp.1137-1144
    • /
    • 2003
  • To provide evidence that the changes in oceanic environmental conditions are useful indices for predicting stock structure and distribution of the Pacific saury (Cololabis saira), the body length compositions and catch per unit fishing effort were examined in relation to the sea surface temperature(SST) anomalies in the Tsushima Warm Current(TWC) region. The size of the fish became larger(smaller) than the average in the same size category during the season of higher SST(lower SST) as opposed to the normal SST. The year-to-year changes in body size caused by the changes in the environmental conditions led the stock to be homogeneous during the period of high stock level from the late 1950s to early 1970s and in the 1990s. The changes in body size manifested by higher(lower) occurrence rates of larger (smaller) sized groups in relation to temperature anomalies suggest that the changes in the environmental conditions affect the distribution and the structure of the stock in the TWC region. Therefore, if the SST anomaly derived from satellite data is large enough in the early spring months(Mar. or Apr.), it is possible to predict whether or not sea temperature will be favorable for large sized groups of saury at normal or slightly earlier time of commencement of the fishery in spring(Apr.∼June).

Precise Geoid Calculation Using Shipborne Gravity Data of the Mid-Yellow Sea Around KOREA (해상중력자료를 이용한 서해 중부해역의 정밀지오이드 산정)

  • 최윤수;박병욱;최광선;김진섭
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.4
    • /
    • pp.383-388
    • /
    • 2002
  • This study suggests a data processing method for precise geoid height calculation through sea gravity data of mid-Yellow Sea provided by Haeyang 2000 and satellite altimetry data and the EGM96 geopotential model from GSFC/DMA in USA. Also it compared sea gravity data with satellite altimetry gravity data. As a result, precise geoidal undulation of the mid-Yellow Sea presented from calculating and integrating EGM96 geopotential model in degree and order 167 and a relative geoid by integral radius of 27km respectively It has a mean value of 18.339m, varying from 13.564m to 22.785m. the comparison between sea gravity data and satellite altimetry data shows that the former is more precise than the latter, which showed an anomaly of 0.56m0Gal and RMSE of 4.195m.

Analysis of CHAMP Magnetic Anomalies for Polar Geodynamic Variations

  • Kim Hyung Rae;von Frese Ralph R.B.;Park Chan-Hong;Kim Jeong Woo
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.1
    • /
    • pp.91-98
    • /
    • 2005
  • On board satellite magnetometer measures all possible magnetic components, such as the core and crustal components from the inner Earth, and magnetospheric, ionospheric and' its coupled components from the outer Earth. Due to its dipole and non-dipole features, separation of the respective component from the measurements is most difficult unless the comprehensive knowledge of each field characteristics and the consequent modeling methods are solidly constructed. Especially, regional long wavelength magnetic signals of the crust are strongly masked by the main field and dynamic external field and hence difficult to isolate in the satellite measurements. In particular, the un-modeled effects of the strong auroral external fields and the complicated behavior of the core field near the geomagnetic poles conspire to greatly reduce the crustal magnetic signal-to-noise ratio in the polar region relative to the rest of the Earth. We can, however, use spectral correlation theory to filter the static lithospheric and core field components from the dynamic external field effects that are closely related to the geomagnetic storms affecting ionospheric current disturbances. To help isolate regional lithospheric anomalies from core field components, the correlations between CHAMP magnetic anomalies and the pseudo-magnetic effects inferred from satellite gravity-derived crustal thickness variations can also be exploited, Isolation of long wavelengths resulted from the respective source is the key to understand and improve the models of the external magnetic components as well as of the lower crustal structures. We expect to model the external field variations that might also be affected by a sudden upheaval like tsunami by using our algorithm after isolating any internal field components.

Roles of B-dot Controller and Failure Analysis for Dawn-dusk LEO Satellite (6시 저궤도 위성에서 B-dot 제어기 역할과 고장분석)

  • Rhee, Seung-Wu;Kim, Hong-Joong;Son, Jun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.200-209
    • /
    • 2013
  • In this paper, the types of B-dot controller and the review results of B-dot controller stability are summarized. Also, it is confirmed that B-dot controller is very useful and essential tool when a dawn-dusk low earth orbit(LEO) large satellite has especially to capture the Sun for a required power supply in a reliable way after anomaly and that its algorithm is very simple for on-board implementation. New physical interpretation of B-dot controller is presented as a result of extensive theoretical investigation introducing the concept of transient control torque and steady state control torque. Also, the failure effect analysis results of magnetic torquers as well as a simulation verification are included. And the design recommendation for optimal design is provided to cope with the failure of magnetic torquer. Nonlinear simulation results are included to justify its capability as well as its performance for an application to a dawn-dusk LEO large satellite.

Regional sea water chlorophyll distribution derived from MODIS for near-real time monitoring

  • Liew, S.C.;Heng, A.W.C.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1039-1041
    • /
    • 2003
  • Ocean color products derived from remote sensing satellite data are useful for monitoring the sea water quality such as the concentrations of chlorophyll, sediments and dissolved organic matter. Currently, ocean color products derived from MODIS data can be requested from NASA over the internet. However, due to the bandwidth limitation of most users in this region, and the time delay in data delivery, the products cannot be use for near-real time monitoring of sea water chlorophyll. CRISP operates a MODIS data receiving station for environmental monitoring purposes. MODIS data have been routinely received and processed to level 1B. We have adapted the higher level processing algorithms from the Institutional Algorithms provided by NASA to run in a standalone environment. The implemented algorithms include the MODIS ocean color algorithms. Seasonal chlorophyll concentration composite can be compiled for the region. By comparing the near-real time chlorophyll product with the seasonal composite, anomaly in chlorophyll concentration can be detected.

  • PDF

Plasmaspheric contribution to the GPS TEC

  • Jee, Geon-Hwa;Lee, Han-Byul;Kim, Yong-Ha;Chung, Jong-Kyun;Cho, Jung-Ho
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.30.3-31
    • /
    • 2010
  • We performed a comprehensive comparison between GPS Global Ionosphere Map (GIM) and TOPEX/Jason (T-J) TEC data for the periods of 1998~2009 in order to assess the performance of GIM over the global ocean where the GPS ground stations are very sparse. Using the GIM model constructed by CODE at University of Bern, the GIM TEC values were obtained along the T-J satellite orbit at the locations and times of the measurements and then binned into various geophysical conditions for direct comparison with the T-J TECs. On the whole, the GIM model was able to reproduce the spatial and temporal variations of the global ionosphere as well as the seasonal variations. However, the GIM model was not accurate enough to represent the well-known ionospheric structures such as the equatorial anomaly, the Weddell Sea Anomaly, and the longitudinal wave structure. Furthermore, there seems to be a fundamental limitation of the model showing the unexpected negative differences (i.e., GPS < T-J) in the northern high latitude and the southern middle and high latitude regions. The positive relative differences (i.e., GIM > T-J) at night represent the plasmaspheric contribution to GPS TEC, which is maximized, reaching up to 100% of the corresponding T-J TEC values in the early morning sector. In particular, the relative differences decreased with increasing solar activity and this may indicate that the plasmaspheric contribution to the maintenance of the nighttime ionosphere does not increase with solar activity, which is different from what we normally anticipate. Among these results, the plasmaspheric contribution to the ionospheric GPS TEC will be presented in this talk and the rest of it will presented in the companion paper (poster presentation).

  • PDF