• Title/Summary/Keyword: Sapphire substrate

Search Result 328, Processing Time 0.023 seconds

Characteristics of ITZO Thin Films According to Substrate Types for Thin Film Solar Cells (박막형 태양전지 응용을 위한 ITZO 박막의 기판 종류에 따른 특성 분석)

  • Joung, Yang-Hee;Kang, Seong-Jun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1095-1100
    • /
    • 2021
  • In this study, ITZO thin films were deposited on glass, sapphire, and PEN substrates by RF magnetron sputtering, and their electrical and optical properties were investigated. The resistivity of the ITZO thin film deposited on the glass and sapphire substrates was 3.08×10-4 and 3.21×10-4 Ω-cm, respectively, showing no significant difference, whereas the resistivity of the ITZO thin film deposited on the PEN substrate was 7.36×10-4 Ω-cm, which was a rather large value. Regardless of the type of substrate, there was no significant difference in the average transmittance of the ITZO thin film. Figure of Merits of the ITZO thin film deposited on the glass substrate obtained using the average transmittance in the absorption region of the amorphous silicon thin film solar cell and the absorption region of the P3HT : PCBM organic active layer were 10.52 and 9.28×10-3 Ω-1, respectively, which showed the best values. Through XRD and AFM measurements, it was confirmed that all ITZO thin films exhibited an amorphous structure and had no defects such as pinholes or cracks, regardless of the substrate type.

Single Crystalline NbO2 Nanowire Synthesis by Chemical Vapor Transport Method

  • Lee, Sung-Hun;Yoon, Ha-Na;Yoon, Il-Sun;Kim, Bong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.839-842
    • /
    • 2012
  • We report for the first time the synthesis of niobium dioxide nanowires on a sapphire substrate by chemical vapor transport method. We identified single crystalline nature of as-synthesized nanowires by scanning electron microscopy and transmission electron microscopy. Niobium dioxide nanowires with their large surface-to-volume ratio and high activities can be employed for electrochemical catalysts and immunosensors. The Raman spectrum of niobium dioxide nanowires also confirmed their identity.

Stability analysis of Au/YBCO film (Au/YBCO 박막의 안정성 해석)

  • 김진석;설승윤
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.245-248
    • /
    • 2002
  • One dimensional conduction equation is solved by finite difference method, to analyse the stability of Au/YBCO film deposited on a sapphire substrate. Jolue heat is included in the case of current sharing state. The analysis shows the quench and recovery of superconductor depending on the amount of thermal disturbance release on the center surface of superconductor. The critical disturbance energies for different filling factor and operating current are calculated.

  • PDF

Quench and recovery characteristics of HTS film after fault current (과도전류 후의 고온초전도체 박막의 퀜치/회복 특성)

  • 박을주;김진석;설승윤
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.2
    • /
    • pp.16-19
    • /
    • 2003
  • Quench and recovery process of high-temperature-superconductor (HTS) film deposited on the sapphire substrate is studied numerically. The quench is developed by fault current and the superconductivity is recovered by convection of heat into coolant. After the fault current. the HTS film experiences the quench state. current sharing state. and finally recovers the superconductivity. Numerical results of this study are compared to the previous experimental results. and shows that this numerical work can explain the mechanism of quench/recovery characteristics of HTS film.

Quench and recovery characteristics of HTS film after fault current (과도전류 후의 고온초전도체 박막의 퀜치/회복 특성)

  • 김진석;박을주;설승윤
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.272-275
    • /
    • 2003
  • Quench and recovery process of high-temperature-superconductor(HTS) film deposited on the sapphire substrate is studied numerically. The quench is developed by fault current and the superconductivity is recovered by convection of heat into coolant. After the fault current, the HTS film experiences the quench state, current sharing state, and finally recovers the superconductivity. Numerical results of this study are compared to the previous experimental results, and shows that this numerical work can explain the mechanism of quench/recovery characteristics of HTS film.

  • PDF

Stability analysis of high-temperature superconductor(Au/YBCO) film using one-dimensional FDM (1차원 FDM을 이용한 고온 초전도체(Au/YBCO) 박막의 안정성 해석)

  • 김진석;설승윤
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.2
    • /
    • pp.27-30
    • /
    • 2002
  • One dimensional conduction equation is solved by finite difference method, to analyse the stability of Au/YBCO film deposited on a sapphire substrate. Joule heat is included in the case of current sharing state. The analysis shows the quench and recovery of superconductor depending on the amount of thermal disturbance release on the center surface of superconductor. The critical disturbance energies for different filling factor and operating current are calculated.

Improvement of Current Uniformity by Adjusting Ohmic Resitivity on the Surface in Light Emitting Diodes (발광 다이오드에서 분균일 전극의 Ohmic특성을 이용한 전류분포 균일도 향상)

  • Hwang, Seong-Min;Yun, Ju-Seon;Sim, Jong-In
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.02a
    • /
    • pp.93-94
    • /
    • 2008
  • In order to suppress the current crowding in light emitting diodes (LEDs) grown on sapphire substrate, the effect of nonuniform contact resistivity between TME layer and p-GaN layer on the LED surface was theoretically investigated. The analysis results showed that current crowding occurring around p-electrode could be considerably improved, which in turn would be helpful to improve the electrostatic discharge (ESD) characteristic.

  • PDF