• Title/Summary/Keyword: Sandy sediment

Search Result 190, Processing Time 0.025 seconds

Selective Suspension of Sediment under Waves and Currents on the Inner Shelf

  • 이관홍
    • Proceedings of the KGS Conference
    • /
    • 2003.11a
    • /
    • pp.29-33
    • /
    • 2003
  • Sandy shoreface에서 외해로 가면서 퇴적물의 입경이 작아지는 퇴적물의 분급이 이루어지고 있다는 것은 잘 알려진 사실이다 (e.g., Inman 1953; Niedoroda et al.,1985; Bailard and Bowen 1981; Guillen and Hoekstra, 1996). 이러한 cross-shore의 퇴적물 입경 분급에 중요한 mechanism은 표층에서 상대적으로 큰 입자들이 bedload로 해안으로 이동하는 반면, 표층에서 높이 부유한 부유 퇴적물이 외해로 운반되는 양 방향 퇴적물 이동이라고 할 수 있다. (중략)

  • PDF

Measurements of Backscattering Strength from Various Shapes of Sediment Surfaces and Layers (퇴적층 구성 매질 및 표면 형태에 따른 후방산란 강도 측정)

  • 김형수;최지웅;나정열;석동우
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.78-87
    • /
    • 2003
  • High-frequency (126-㎑) bottom backscattering measurements with various bottom types were conducted at the water tank in Ocean Acoustic Laboratory, Hanyang University. For the purpose of investigating the energy distribution of bottom scattering with various bottom types, the sediment was varied with gravel, sand, sandy mud and mixed bottoms. To examine the anisotropic nature of the scattering due to the orientations of bottom ripple, the footprints were made transverse and longitudinal to the direction of incident wave. The total scattering characteristics are that the larger grazing angles the larger backscattering strengths become and backscattering strengths for a transverse ripple case are higher than those of longitudinal ripple case. finally, the variations of scattering strength depend mainly on the ripple's orientation.

Characteristics of a Turbidite Sediment from the Southern Margin of the Okinawa Trough, Japan (오끼나와해곡 남쪽해역의 저탁류 퇴적물의 특성)

  • 현상민
    • 한국해양학회지
    • /
    • v.30 no.2
    • /
    • pp.69-76
    • /
    • 1995
  • A turbidite core sediment (RN88-PC5) from 2051 m on the deep-sea floor at the southern margin of Okinawa Trough was examined. Sedimentological characteristics were quite different between sandy sediments and hemipelagic sediments and hemipelagic sediments in terms of benthic foraminiferal assemblage, grain-size and chemical composition. All turbidite sandy sediments were clearly transported from shallow area as they include typical coral reef dwelling benthic foraminifera which were not found in the background hemipelagic sediments. These layers also suggest that the sediments were transported by turbidity-related currents and implies that sedimentological mechanisms were different between sandy sediments and hemipelagic sediments. The result of the /SUP 14/ C age dating and the stable oxygen isotopic fluctuation of planktonic foraminifera show a gradual warming trend of the surface water from about 10 Ka to present. Also Termination lb as well as two fresh water input events were recognized at ca2 and 7 ka.

  • PDF

Fluvial Deposits Distributed along the Seomjin River (섬진강 유역의 하성 퇴적층에 관한 연구)

  • You, Hoen-Su;Cho, Seok-Hee;Koh, Yeong-Koo
    • Journal of the Korean earth science society
    • /
    • v.21 no.2
    • /
    • pp.174-187
    • /
    • 2000
  • The Quaternary coarse-grained sandy sediments are distributed along the channels of Seomjin River. The fluvial sediments were sedimentologically studied in horizontal and vertical distributions. To analyze depositional environments and facies changes in the sediments, sediment sampling from river mouth to upper stream and desctriptive approaches to the sediment profiles outcropped near Kurye were carried out. The sediments along the stream lines of the river are assigned to very coarse to coarse sand in grain size. The sediment grains are widely scattered in sorting and moderately sorted in average. For skewness and kurtosis, the sediments ranges from very fine to very coarse skewed and from very lepto-kurtic to extremelyl epto-kurtic states, respectively. The sediments are divided into slightly gravelly sand, gravelly sand and sandy gravel in sediment type. The pain shape in the sandy sediments are dominant in equant and tabular forms showing wide varieties. The sandy sediments are mostly poorly sorted and are highly variable in surface texture with SEM. Some smaller grains in the sediments ordinarily show polished surfaces. Of those grains, quartz ones are commonly angular to surounded. On the basis of facies changes and sedimentary structures, outcropped fluvial sediment profiles in Kurye are classified into xGyS, mGyS, gGyS, xSM, xS, mS, mGyM, IgM in facies. These eight facies are reformed as facies assemblage I and ll. The facies assemblage I and II are interpreted as the products of the channel deposits in braided stream and flood plain ones besides channels, respectively. The change facies assemblage I with facies assemblage ll imply that depositional environments hadbeen migrated from braied sream to flood plain ones.

  • PDF

Effects of Depth-varying Compressional Wave Attenuation on Sound Propagation on a Sandy Bottom in Shallow Water (천해 사질 퇴적층에서 종파감쇠계수의 깊이별 변화가 음파손실에 미치는 영향)

  • Na, Young-Nam;Shim, Tae-Bo;Jurng, Moon-Sub;Choi, Jin-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2E
    • /
    • pp.76-82
    • /
    • 1994
  • The characteristics of bottom sediment may be able to vary within a few meters of depth in shallow water. Since bottom attenuation coefficient as well as sound velocity in the bottom layer is determined by the composition and characteristics of sediment itself, it is reasonable to assume that the bottom attenuation coefficient is accordingly variable with depth. In this study, we use a parabolic equation scheme to examine the effects of depth-varying compressional wave attenuation on acoustic wave propagation in the low frequency ranging from 100 to 805 Hz. The sea floor under consideration is sandy bottom where the water and the sediment depths are 40 meters and 10 meters, respectively. Depending on the assumption that attenuation coefficient is constant or depth-varying, the propagation loss difference is as large as 10dB within 15 km. The predicted propagation loss is very much comparable to the measured one when we employ a depth-varying attenuation coefficient.

  • PDF

Laboratory/In situ Sound Velocities of Shelf Sediments in the South Sea of Korea

  • Kim, Dae-Choul;Kim, Gil-Young;Jung, Ja-Hun;Seo, Young-Kyo;Wilkens, Roy H.;Yoo, Dong-Geun;Lee, Gwang-Hoon;Kim, Jeong-Chang;Yi, Hi-Il;Cifci, Gunay
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.2
    • /
    • pp.103-112
    • /
    • 2008
  • Compressional sound velocities of shelf sediments in the South Sea of Korea, were measured in situ and in the laboratory for six cores. In situ sound velocity was measured using the Acoustic Lance (frequency of 7.5-15 kHz), while laboratory velocity was measured by the pulse transmission technique (frequency of 1MHz). Physical properties were relatively uniform with sediment depth, suggesting little effect of sediment compaction and/or consolidation. Average in situ velocity at each core site ranged from 1,457 to 1,488 m/s, which was less than the laboratory velocity of 1,503 and 1,604m/s. In muddy sediments the laboratory velocity was 39-47 m/s higher than in situ velocity. In sandy sediments, the difference was greater by an average of 116 m/s. Although the velocity data were corrected by the velocity ratio method based on bottom water temperature, the laboratory velocity was still higher than the in situ velocity (11-21 m/s in muddy sediments and 91 m/s in sandy sediments). This discrepancy may be caused by sediment disturbance during core collection and/or by the pressure of Acoustic Lance insertion, but it was most likely due to the frequency difference between in situ and laboratory measurement systems. Thus, when correcting laboratory velocity to in situ velocity, it is important to consider both temperature and frequency.

Sandy Sediment Transport Mechanism on Tidal Sand Bodies, West Coast of Korea (해양(조수환경) 사립퇴적물의 이동기작에 관한 연구 - 한국 서해 만경강.동진강 하구 해역 -)

  • Yong Ahn Park;Hyo Jin Kang;Y.I. Song
    • The Korean Journal of Quaternary Research
    • /
    • v.5 no.1
    • /
    • pp.33-45
    • /
    • 1991
  • Sand bars associated with strong tidal currents are well developed in the subtidal zone near the Kokunsan islands. Tidal currents measured at sand bar in the area show an asymmetry in magnitude between flood and ebb currents. At the southern flank of the sand bar the currents are flood-dominant whereas the currents are ebb-dominant at the northern flank. The asymmetry is more distinctive as the currents become stronger during spring tide. Moreover, the flood-dominance along the southern flank is stronger than the ebb-dominance along the northern flank. Thus the flood current is more affective to the sand bar. The sandy bottom sediment is mostly transported as bedload by the tidal currents. The magnitude asymmetry of the tidal currents results in a net sediment movement in one direction. The direction is onshore in the south and offshore in the north, which may result in a net counterlookwise rotation of the sands around the sand bar. However, the sand bar may migrate towards onshore due to the more affective flood current in the south. The irregular V-shaped outline of the sand bar in the south also seem to reflect the strong effect of flood current.

  • PDF

Foramniferal Characteristics in the Ganghwa Tidal Flat (강화 남부 갯벌의 유공충 특성)

  • Woo, Han Jun;Lee, Yeon Gyu
    • Journal of Wetlands Research
    • /
    • v.8 no.3
    • /
    • pp.51-65
    • /
    • 2006
  • Surface sediments for sedimentary analyses were sampled at 199 stations in the study area in August 2003. The surface sediments consisted of six sedimentary facies. Generally, sandy mud sediments dominated in the southern tidal flat of Ganghwa Island and sand sediments dominated in channel and subtidal zones of the western part of Ganghwa Island. The area of sandy mud sediment extended to eastward tidal flat compared to sedimentary facies in August 1997. In 30 surface sediment samples from the Ganghwa tidal flat and subtidal zone, 61 species were recorded in total assemblages, including 34 species of living population. Ammonia beccarii and Elphidium etigoense in living population and Ammonia beccarii, Elphidium etigoense, Jadammina sp. and Textularia earlandi in total assemblage were widely distributed. Generally, relatively large numbers of species and high values of species diversity occurred in the area of western part of tidal flat. Cluster analysis of total assemblages discriminates four biofacies. Biofacies 1 indicated eastern part of the tidal flat and biofacies 4 indicated western part of the tidal flat. Biofacies 3 were transitional zone between biofacies 1 and 4.

  • PDF

Effect of the Tidal Sea Level Change on the Unconsolidated Sediment in Gwangyang Bay (광양만 조석 해수면 변동의 미고결 퇴적층에 대한 영향)

  • CHO Tae-Chin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.1
    • /
    • pp.9-20
    • /
    • 1991
  • The characteristics of the unconsolidated sediment in Gwangyang bay was analyzed from the core samples. The porosity of the sediment showed irregular variation with respect to the sedimentation depth, which indicated that sediment weight-induced consolidation was not significant. Numerical analysis for the mechanical and hydraulic behavior of the unconsolidated sediment due to the tidal sea level change was processed. Because of the delayed excessive pore pressure change in the very low permeable mud medium, the magnitude of the excessive pore pressure for the duration of the minimum sea level exceeded the total stress from the sea water weight, which resulted in the negative (tensional) effective stress below the top surface. The in-situ effective stress, obtained by superposing the tensional effective stress on the solid weight-induced compressive stress, was remained to be tensile (quick-sand condition) near the top surface of the mud deposit. The occurrence of the quirk-sand condition provided a theoretical evidence for the insignificant consolidation and the irregular porosity variation of the sediment. When the sand is distributed on the top surface of the mud layer, the quick-sand condition occurred below the sandy mud layer and the downward movement of sand particles was facilitated.

  • PDF

Community Structure of Subtidal Macrobenthos in Hampyung Bay during Autumn in 1997, Southwest Coast of Korea (한국 서남해역 함평만 조하대의 가을철 저서동물 군집구조)

  • LIM Hyun-Sig;CHOI Jin-Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.4
    • /
    • pp.327-339
    • /
    • 2001
  • Community structure of macrobenthos was studied at forty one stations of Hampyung Bay, southwest coast of Korea. Three replicate sediment samples were taken at each station in October 1997, using a van Veen grab (surface area $0.1\;m^2$). The types of surface sediment in the sampling area were muddy sandy gravel between bay mouth and bay proper, and gravelly sandy mud between bay proper and inner bay stations. The particulate organic carbon content in the surface sediment was $0.23\sim0.69\%\;(0.44\pm0.10\%)$. A total of 168 species collected during the study period is composed of 58 of polychaetes, 54 of crustaceans, 34 of molluscs and 22 of miscellaneous. The former two taxa together were accounted for $66.6\%$ of the total number of species. The mean density was $1,168 ind./m^2$, comprising $684 ind./m^2$of molluscs ($58.6\%$), $381 ind./m^2$of polychaetes ($32.6\%$), and $90 ind./m^2$of crustaceans ($13.2\%$). The mean biomass was $358.65 g/m^2$, which is consisted of $302.97 g/m^2$of molluscs ($84.5\%$), $24.20 g/m^2$of echinoderms ($6.7\%$), and $19.16 g/m^2$of crustaceans ($5.4\%$). Major dominant species at the inner stations of the study area was Ruditapes philippinarum with a density of $520ind./m^2$($44.5\%$), and Lumbrineris lontifolia with $183ind./m^2$($15.7\%$), while that at bay mouth stations Pitar indecoroides with $56ind./m^2$. Reticunassa festiva, Heteromastus sp., Praxillella affinis, Chone sp. and Tharyx sp. were at from all stations. Based on the cluster analysis, the macrobenthic community in the bay was classified into five station groups depending on sediment types: Group A, a high gravel content in the sediment; Group B, stations with high mud content from bay mouth to bay proper, Group C, stations with fine and poorly sorted sediment from bay proper to the inner bay. The distribution pattern of the number of species, abundance and biomass is discussed in relation to environmental variables.

  • PDF