• Title/Summary/Keyword: Sandy Soil

Search Result 1,242, Processing Time 0.024 seconds

Effects of Simulated Acid Rain on Nutrient Contents of Pinus densiflora S. et Z. and Forsythia koreana Nak. Seedlings (인공산성우(人工酸性雨)가 소나무 및 개나리묘(苗)의 식물체내(植物體內) 함유성분(含有成分)에 미치는 영향(影響))

  • Cheong, Yong Moon
    • Journal of Korean Society of Forest Science
    • /
    • v.77 no.3
    • /
    • pp.259-268
    • /
    • 1988
  • For the purpose of examining the effects of simulated acid rain on nutrient contents of plant tissues in Pintos densiflora seedlings and Forsythia koreana rooted cuttings, the experimental design of randomized block arrangement with three replications was implemented in the experimental field of Yesan National Agricultural Junior College. One-year-old Pinus densiflora seedlings and Forsythia koreana cuttings were planted in the pots filled the mixed soils(nursery soil : forest soil of siliceous sandy loam=1 : 1 v/v) in the early spring of 1986. The regime of artificial acid rain, in terms of spray frequency per month and spray amount at single treatment per plot, was simulated on the basis of climatological data averaged from 30 years records. Simulated acid rain(pH 2.0, pH 4.0, and pH 5.5 as control) containing sulfuric and nutric acid in the ratio of 3 : 2(chemical equivalant basis) diluted with ground water were treated on the experimental plants under condition of cutting off the natural precipitation with vinyl tunnel, during the growing season(May 1 to August 31) in 1986. The results obtained in this study were as follow : (1) As for the nitrogen contents in plant tissues, P. densiflora increased significantly in one-year-old stembranch and root tissues, and F. koreana increased significantly in leaf and root tissues, as the pH levels of acid rain decreased. (2) The available phosphate contents in root tissues of P. densiflora, and in leaf and root tissues of F. koreana were significantly decreased, as the pH levels of acid rain decreased. (3) $K_2O$, CaO and MgO contents in plant tissues were significantly decreased in the both species as the pH levels decreased. And the effects of acid rain on F. koreana were higher than those of P. densiflora. (4) Sulfur contents of plant tissues in the both species were increased at pH 2.0 treatment. There were significant differences among three acid rain treatments in leaf and root tissues of P. densiflora, and in all parts of F. koreana. (5) In the effects of simulated acid rain on the both species and the tested soils, in general, F. koreana revealed higher sensitiveness than P. densiflora, and the lower pH levels of simulated acid rain were treated, the more sharp reaction was showed.

  • PDF

Environmental Condition for the Butt-Rot of Conifers by Cauliflower Mushroom (Sparassis crispa) and Wood Quality of Larix kaempferi Damaged by the Fungus (꽃송이버섯에 의한 침엽수 심재부후 발생환경 및 낙엽송 피해목의 재질 특성)

  • Park, Hyun;Oh, Deuk-Sil;Ka, Kang Hyeon;Ryu, Sung-Ryul;Park, Joo-Saeng;Hwang, Jaehong;Park, Jun-Mo
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.1
    • /
    • pp.16-25
    • /
    • 2009
  • Cauliflower mushroom (Sparassis crispa) is recently recognized as a new edible and/or medicinal mushroom cultivated with conifers. By the way, the mushroom is notorious as a brown-rot fungus that causes a buttrot of larch. So, there should be a careful consideration to apply the mushroom cultivation in coniferous stand. This study was conducted to clarify the seriousness of heartwood decay on conifers such as larch by cauliflower mushroom with surveying the mushroom producing environment and to examine whether the cultivation of cauliflower mushroom produce any problem in conifer stands or not. The mushroom occurred in various coniferous stands such as Larix kaempferi, Pinus koraiensis, P. densiflora and Abies holophylla on fertile soils with adequate moisture. Soil texture of the mushroom producing site was comparatively fine compared to general forest soils; sandy loam, loam and silty loam. Soil pH ranged from 4.6 to 5.2, and organic matter contents were 4~11%, which showed relatively wide range. We could find S. crispa by a DNA technique from the wood that seemed to have no heartwood decay by naked eyes. The damaged wood showed 30% higher moisture contents than that of sound wood, while the compressive strength was 30% lowered down compared to that of sound wood. The fungus may invade conifers through the scars occurred on roots or stems, in this case spore dispersion of the mushroom takes a great role. Thus, we concluded that forest tending activities need to be applied with considering the invasion of S. crispa, and cultivation of cauliflower mushroom in forest should be attempted very carefully. By the way, we also infer that conifer stands can be nurtured without heartwood decay by S. crispa if the stand be managed in good aeration conditions by proper silvicultural practices such as sanitary thinning.

Behavior of NO3-N and Accompanying Cations Derived from Urea under Upland Condition -I. Leaching of NO3-N and Accompanying Cations (요소유래(尿素由來) NO3-N 및 동반(同伴) 양(陽)이온의 토양(土壤) 중 행동(行動) -I. NO3-N 동반(同伴) 양(陽)이온의 용탈(溶脫))

  • Yun, Sun-Gang;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.1
    • /
    • pp.15-20
    • /
    • 1994
  • Lysimeter experiments were conducted to elucidate the behavior of $NO_3-N$ derived from urea applied at different rates and accompanying cations in soils and to further provide fundamental information of rational nitrogen-fertilizer management. Urea was applied at rates of 0, 7, 14, 21, 28 and 35kg N/10a to sandy loam pakced into PVC cylindrical lysimeter(vol. : $0.187m^2$, area $0.43m^2$). Leachates from the lysimeter with or without grass grown were collected periodically and analyzed for $NO_3$ and cations. Grass growth and yield responses to N fertilization were also examined. Dry matter yield and nitrogen uptake increased with the urea application rate. The amount of leachate from the lysimeter was negatively correlated with urea application ratesl($r=-0.95^{**}$). The nitrate leaching loss with grass grown was 230 g N/10a at the maximum rate of 35kg N/10a, but the highest leaching loss was observed as 1,607 g N/10a from the bare plot. Increase in urea application rates decreased significantly leaching losses of Ca, Mg, K and Na(>0.01). The highest leaching loss from the bare plot was observed for Ca but only 6.5% of exchangeable form and 14.0% for K from the grass plot respectively. Equivalent ratio of cations to nitrate leached were 3.2 % for the bare plot and the ratio for the grass plot increased with the urea application rate, ranging from 18.6 to 32.7%.

  • PDF

Development of a Distribution Prediction Model by Evaluating Environmental Suitability of the Aconitum austrokoreense Koidz. Habitat (세뿔투구꽃의 서식지 환경 적합성 평가를 통한 분포 예측 모형 개발)

  • Cho, Seon-Hee;Lee, Kye-Han
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.504-515
    • /
    • 2021
  • To examine the relationship between environmental factors influencing the habitat of Aconitum austrokoreense Koidz., this study employed the MexEnt model to evaluate 21 environmental factors. Fourteen environmental factors having an AUC of at least 0.6 were found to be the age of stand, growing stock, altitude, topography, topographic wetness index, solar radiation, soil texture, mean temperature in January, mean temperature in April, mean annual temperature, mean rainfall in January, mean rainfall in August, and mean annual rainfall. Based on the response curves of the 14 descriptive factors, Aconitum austrokoreense Koidz. on the Baekun Mountain were deemed more suitable for sites at an altitude of 600 m or lower, and habitats were not significantly affected by the inclination angle. The preferred conditions were high stand density, sites close to valleys, and distribution in the northwestern direction. Under the five-age class system, the species were more likely to be observed for lower classes. The preferred solar radiation in this study was 1.2 MJ/m2. The species were less likely to be observed when the topographic wetness index fell below the reference value of 4.5, and were more likely observed above 7.5 (reference of threshold). Soil analysis showed that Aconitum austrokoreense Koidz. was more likely to thrive in sandy loam than clay. Suitable conditions were a mean January temperature of - 4.4℃ to -2.5℃, mean April temperature of 8.8℃-10.0℃, and mean annual temperature of 9.6℃-11.0℃. Aconitum austrokoreense Koidz. was first observed in sites with a mean annual rainfall of 1,670- 1,720 mm, and a mean August rainfall of at least 350 mm. Therefore, sites with increasing rainfall of up to 390 mm were preferred. The area of potential habitats having distributive significance of 75% or higher was 202 ha, or 1.8% of the area covered in this study.

Effects of Temperature and Irrigation Intervals on Photosynthesis, Growth and Growth Analysis of Pot-grown Cucumber Seedlings (온도와 관수 주기가 오이 포트 묘의 광합성, 생육 및 생장 해석에 미치는 영향)

  • Jin Hee An;Eun Yong Choi;Yong Beom Lee;Ki Young Choi
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.148-156
    • /
    • 2023
  • This study was conducted in an indoor cultivation room and chamber where environmental control is possible to investigate the effect of temperature and irrigation interval on photosynthesis, growth and growth analysis of potted seedling cucumber. The light intensity (70 W·m-2) and humidity (65%) were set to be the same. The experimental treatments were six combinations of three different temperatures, 15/10℃, 25/20℃, and 35/25℃, and two irrigation intervals, 100 mL per day (S) and 200 mL every 2 days (L). The treatments were named 15S, 15L, 25S, 25L, 35S, and 35L. Seedlings at 0.5 cm in height were planted in pots (volume:1 L) filled with sandy loam and treated for 21 days. Photosynthesis, transpiration rate and stomatal conductance at 14 days after treatment were highest in 25S. These were higher in S treatments with a shorter irrigation interval than L treatments. Total amount of irrigation water was supplied evenly at 2 L, but the soil moisture content was highest at 15S and lowest at 25S > 15L > 25L, 35S and 35L in that order. Humidity showed a similar trend at 15/10℃ (61.1%) and 25/20℃ (67.2%), but it was as high at 35/25℃ (80.5%). Cucumber growth (plant height, leaf length, leaf width, chlorophyll content, leaf area, fresh weight and dry weight) on day 21 was the highest in 25S. Growth parameters were higher in S with shorter irrigation intervals. Yellow symptom of leaf was occurred in 89.9% at 35S and 35L, where the temperature was high. Relative growth rate (RGR) and specific leaf weight (SLA) were high at 25/20℃ (25S, 25L), RGR tended to be high in the S treatment, and SLA in the L treatment. Water use efficiency (WUE) was high in the order of 25S, 25L > 15S > 15L, 35S, and 35L. As a result of the above, the growth and WUE were high at the temperature of 25/20℃.

Studies on the Desertification Combating and Sand Industry Development(I) - Present Status and Countermeasures for the Combating Desertification in China - (사막화방지(沙漠化防止) 및 방사기술개발(防沙技術開發)에 관한 연구(硏究)(I) - 중국(中國)의 사막화현황(沙漠化現況) 및 방지대책(防止對策) -)

  • Woo, Bo-Myeong;Lee, Kyung-Joon;Jeon, Gi-Seong;Kim, Kyung-Hoon;Choi, Hyung-Tae;Lee, Seung-Hyun;Lee, Byung-Kwon;Kim, So-Yeon;Lee, Sang-Ho;Jeon, Jeong-Ill
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.3
    • /
    • pp.45-76
    • /
    • 2000
  • The purposes of this study were to investigate and understand the present status of various types of "deserts", such as sand desert, gravel desert, rock desert, earth desert, salt desert, desert, rocky desert, gobi desert, sandy desert, clay desert, etc., and the general countermeasures for the combating "desertification" "desertization", and to develop the technologies on the revegetation and restoration for the combating desertification in China. The methods of this study were mainly composed of field surveys on the several experimental sites and research institutes related to combating desertification in China, and examinations on the various technologies for the combating desertification at the Daxing Experimental Station of Beijing Forestry University. The conclusion from this study may be summarized as follows; 1. Status and tendency of desertification in China : China is one of the countries seriously threatened by desertification. Desertification affected areas in China are mainly distributed in arid, semi-arid and dry sub-humid areas in China, covering the most regions of the Northeast China (eastern region of Inner-Mongolia), the northern part of the North China (middle and western region of Inner-Mongolia, Shaanxi, Ningsha, Gansu) and the western part of the Northwest China (Xinzang, Qinghai, Xizang). The total area affected by desertification in China is approximately 2.622 million $km^2$. It covers 27.3% of the total territory of China. Until recently, it is estimated that the annual spreading ratio of desertification in China is 2,460 $km^2$. Therefore, desertification is mostly serious problems facing to the Chinese people. 2. The causes and environmental effect of desertification : The desertification in China is mainly caused by compound factors, including natural condition and human activities. In China, the desertification is started by the decrease of precipitation, continuous dry and drought, strong wind, wind and water erosion, land degradation and loss of natural vegetation caused by climate variation, and accelerated by the human activities, such as over-cultivating, over-grazing, over-cutting of woods, irrational use of water resources. Because desertification has affected the geographical features, soil nutrients contents, salinity, vegetation coverage and the functions of ecosystem, the environmental deteriorations in the desertification affected areas are very seriously. 3. The fundamental strategies of combating desertification in China are the increase of education and awareness of people through various mass media, the revision of laws to guarantee operation of Desertification Combating Law and to improve many relating laws and regulations, the application of advanced technologies and training of experts, the establishment of discriminative policies, and increasing arrangement of budget-investment, and so on. China, as a signed country in UNCCD, has made efforts for the combating desertification. Korea is also signed country in UNCCD, so we should play an important role in the desertification combating projects of China for the northest asia and global environmental conservation as well as environmental conservation of Korea.

  • PDF

Effects on the Pine Mushroom Yield of Controlling Environmental Conditions at the Pine Stands in Namwoon, Korea (남원(南原) 소재(所在) 소나무림(林)의 환경조절(環境調節) 처리(處理)가 송이 발생량(發生量)에 미치는 영향(影響))

  • Park, Hyun;Kim, Se Hyoun;Kim, Kyo Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.3
    • /
    • pp.399-404
    • /
    • 1997
  • This paper is presenting a practical result of environmental manipulation effect on pine mushroom Tricholoma matsutake yield and a discussion of key factor seeking for improving pine mushroom production by analyzing the effects on mushroom yield for 10 years with applying five kinds of environmental control at the pine stands located in Namwon, Chollabuk-do, Korea. The environmental controls included density control and forest floor manipulations, and the treatments were applied during early summer of 1983. The mushroom yield itself did not show statistically significant differences among the treatments. But, we could manifest the treatment effects by calculating the relative yield in percent on the basis of pretreatment yield collected in 1982. The forest floor manipulation with density control may affect pine mushroom yield in short term, and continuous management should be applied to keep and improve the mushroom production. The fine root activity was the most important factor of pine mushroom production at the Namwon research site since the floor raking resulted in the largest effect on the mushroom yield although the environmental condition for the growth of fungi is important for pine mushroom production. In addition, the pine mushroom forest with sandy soils demands adequate litter layer since the litter removal showed relatively detrimental effects on pine mushroom yield compared to that in litter covered plot at the research site. That is, soil texture should be considered for forest floor manipulation, and it is reconfirmed that the environmental control to improve pine mushroom production should be applied differently by each region.

  • PDF

Studies on Epicotyl Grafting of Hardwood Scion of Walnut (호도(胡桃)나무 유태접목(幼台接木)에 관(関)한 연구(硏究))

  • Kim, Su In
    • Journal of Korean Society of Forest Science
    • /
    • v.55 no.1
    • /
    • pp.68-75
    • /
    • 1982
  • This study was carried out to promote percent survival of the walnut seedling grafting. The hardwood scions of the walnut were grafted on the nures seed-stock of the Juglans mandshurica Mat in an electric heating bed, then planted in field. The results obtained from the study were as follows : The optimum time of scion cpllection was from January to February. The best medium of the seed bed was sandy soil. The best grafting time was form the early to the 20the of the march. When the grafted seedling in the heating bed was trans-planted on filed 90percent of the seedlings was survived until autmn. The percent grafting on the elective heating bed was 90%. Crown gall occuring frequently in chestnut nurse graft was not appeared in juglans mandshurica Max grafted seedling of after outplanting. The grafted seedlings have not shown any physiological defects but developed normaly 3 years since grafting.

  • PDF

Environmental Change of High Moor in Mt. Dae-Am of Korean Peninsula (대암산 고층습원의 환경변천)

  • Yoshioka, Takahito;Kang, Sang-Joon
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.1 s.110
    • /
    • pp.45-53
    • /
    • 2005
  • The environmental change of Yong-nup in Mt. Dae-Am, which is located at the northern part of Kangwon-Do, Korea, was assesed with peat sedimentary carbon and nitrogen isotope analysis. The surface layer of the peat (0 ${\sim}$ 5 cm) was 190 year BP, and the middle layers (30 ${\sim}$ 35 cm and 50 ${\sim}$ 55 cm) were 870 year BP and 1900 year BP, respectively. Bulk sedimentation rate was estimated to be about 0.4 mm $year^{-1}$ for 0 cm to 30 cm and 0.15 mm $year^{-1}$ for 35 cm to 50 cm. The $^{14}C$ age of the bottom sediment (75 ${\sim}$ 80 cm) collected and measured in this study was about 1900 year BP, although it was measured that the $^{14}C$ of the lowest bottom sediment in Yong-nup was 4105 ${\pm}$ 175 year BP (GX-23200). Since the $^{14}C$ ages for 50 ${\sim}$ 55 cm and 75 ${\sim}$ 80 cm layers were almost the same as 1890 ${\pm}$ 80 fear BP (NUTA 5364) and 1850 ${\pm}$ 90 year BP (NUTA 5462), respectively, we have estimated that the deep layers (55 ${\sim}$ 80 cm) in the high moor were the original forest soil. The low organic C and N contents in the deeper layers supported the inference. The sediment of 50 ${\sim}$ 55 cm layer contains much sandy material and showed very low organic content, suggesting the erosion (flooding) from the surrounding area. In this context, the Yong-nup, high moor, of Mt. Dae-Am, might have developed to the sampling site at about 1900 year BP. The ${\delta}^{13}C$ values of organic carbon and the ${\delta}^{15}N$ values of total nitrogen in the peat sediments fluctuated with the depths. The profile of ${\delta}^{13}C$ may indicate that the Yong-nup of Mt. Dae-Am have experienced the dry-wet and cool-warm period cycles during the development of the high moor. The ${\delta}^{15}N$ may indicate that the nitrogen cycling in the Yong-nup have changed from the closed (regeneration depending) system to the open (rain $NO_3\;^-$ and $N_2$ fixation depending) system during the development of the high moor.

A Study on the Seasonal Color Characteristics of Warm- and Cool-Season Grasses II. Color Characteristics and Life-span of Leaves in Turfgrasses and Cover Plants+ (난지형 및 한지형 지피식물의 엽색변화에 관한 연구 II. 엽색특성 및 엽수명연장)

  • 심재성;민병훈;서병기
    • Asian Journal of Turfgrass Science
    • /
    • v.9 no.4
    • /
    • pp.293-316
    • /
    • 1995
  • Nitrogen fertilization and cutting practice were studied on turfgrasses and cover plants to investigate the possibility of maintaining green color during the growing season. Research also involved the effect of the nitrogen on a few morphological characteristics of leaf performance elements which might give an information to coloration and life-span of turf leaves. Treatments in the first experiment undertaken on pot included one N level: 350kgN /ha applied as compound fertilizer in split applications of one-half in mid-May and the rest both in late June and August, and four spring-summer cuts: late May, late June, late July and late August. The soil filled in pot a moderately well-drained sandy loam. In the second experiment(field observation) leaf length and width, inflorescence and flowering, and color performance were also investigated. With nitrogen fertilizer applied on turfs, desirable turf color was maintained during a period of poor coloration in specific seasons such as mid-summer for cool season grasses and late fall for warm season grasses comparing to the non-treatment. However, this was not stimulated by cutting treatment to nitrogen status existed. Cutting effect on coloration was more remarkable in both Korean lawngrass and Manilagrass than in cool season turfgrasses such as Italian rye-grass, perennial ryegrass and tall fescue. Especially down-slide of leaf color in cool season turfgrasses could he detected in mid-summer /early fall season ranging up to mid-September. In early November as well as mid-September, Italian ryegrass, perennial ryegrass and tall fes-cue retained a high level of green color as followed by nitrogen application and cutting treatment, and little detectable variation of leaf color notation between cool season turfgrasses was obtained. However, Korean la'vngrass and Manilagrass failed to retain the green color until early November. Color notations in cool season turfgrasses investigated early November on the final date of the experiment ranged from 5 GY 3/1 to 4/8 in 'Ramultra' Italian ryegrass, 'Reveile' perennial ryegrass and 'Arid' tall fescue, but those in Zoysiagrasses were 7.5 YR 4/8 in Korean lawngrass and 2.5 y 5 /6 in Manilagrass. Life-span of leaves was shorter in Italian ryegrass, perennial ryegrass and tall fescue than in beth Korean lawngrass and Manilagrass with and without nitrogen application. In general, leaves appeared in early May had a long life-span than those appeared in late April or mid-June. Nitrogen application significantly prolonged the green color retaining period in perennial ryegrass, Italian ryegrass, Korean lawngrass and Manilagrass, and this was contrasted with the fact that there was no prolonged life-span of leaves emerging in early May and mid-June in tall fescue. SPAD reading values in 48 turfs and cover plants investigated in the field trial were increasing until late June and again decreasing till September. Increasing trends of reading value could be observed in the middle of October in most of grasses. On the other hand, clovers and reed canarygrasses did not restore their color values even in October. Color differences between inter-varieties, and inter-species occurred during the growing season under the field condition implicated that selection of species and /or cultivars for mixture should be taken into consideration. In Munsell color notation investigated in the final date in the middle of November, 32 cultivars belonged under the category of 5 GY and 10 cultivars under the category of 7.5 GY. This was implying that most of cool season turfs and cover plants grown in the center zone of Korean Peninsula which are able to utilize for landscape use can bear their reasonable green color by early or mid-November when properly managed. The applicable possibilities of SPAD readings and Munsell color notation to determine the color status of turfgrasses and cover plants used in this study were discussed.

  • PDF