• Title/Summary/Keyword: Sandwich panel structure

Search Result 109, Processing Time 0.024 seconds

A Study on Flash Over Delay Effects on Applied Plate-Fire Spread Prevention Method at Sandwich Panels Structure (샌드위치패널 건축물 플래시오버 지연을 위한 화재확산방지플레이트 시공방법 연구)

  • Kim, Do-hyun;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.79-87
    • /
    • 2017
  • Sandwich panels which are having the both sides are bonded with a heat insulating material with an iron plate are used as factories, warehouse structures as advantages of convenience in construction at economic efficiency of material cost. However, in a panel structure constructed by continuous joining of sandwich panels, a joint portion where a panel and a panel are connected is generated. The joint part is a part which is easily vulnerable to fire because flames easily flow into the melting and deformation of the iron plate during fire. The flames flowing into the panel induce diffusion of fire by rapid burning, causing damage of human life and property. In this research, we developed a flame spread prevention plate to prevent spreading of sandwich panel. This is an improvement of the workability by the anti-spreading construction method of the existing previous research, it can be applied independently to the connecting part where the panel and the panel are coupled, designed to prevent inflow and spreading of flame did. The actual fire test of the test method of KS F ISO 13784-1 of the sandwich panel specimen was conducted and the burning behavior corresponding to the presence or absence of application of the flame spread prevention plate was grasped at the panel connection part and its effect was measured. Inserting a fire spreading plate into the test result panel connecting part is measured by delaying the flashover, prevention of collapse of the specimen, and temperature rise of the opening, effectively improving the fire safety of the panel structure It was confirmed as a method that can be secured. It is judged that panel structure will contribute to ensuring fire safety by applying the fire spread prevention construction method of various methods ensuring the workability and economy of panel connection vulnerable to fire.

Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure

  • Mehar, Kulmani;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.565-578
    • /
    • 2018
  • This research article reported the nonlinear finite solutions of the nonlinear flexural strength and stress behaviour of nano sandwich graded structural shell panel under the combined thermomechanical loading. The nanotube sandwich structural model is derived mathematically using the higher-order displacement polynomial including the full geometrical nonlinear strain-displacement equations via Green-Lagrange relations. The face sheets of the sandwich panel are assumed to be carbon nanotube-reinforced polymer composite with temperature dependent material properties. Additionally, the numerical model included different types of nanotube distribution patterns for the sandwich face sheets for the sake of variable strength. The required equilibrium equation of the graded carbon nanotube sandwich structural panel is derived by minimizing the total potential energy expression. The energy expression is further solved to obtain the deflection values (linear and nonlinear) via the direct iterative method in conjunction with finite element steps. A computer code is prepared (MATLAB environment) based on the current higher-order nonlinear model for the numerical analysis purpose. The stability of the numerical solution and the validity are verified by comparing the published deflection and stress values. Finally, the nonlinear model is utilized to explore the deflection and the stresses of the nanotube-reinforced (volume fraction and distribution patterns of carbon nanotube) sandwich structure (different core to face thickness ratios) for the variable type of structural parameter (thickness ratio, aspect ratio, geometrical configurations, constraints at the edges and curvature ratio) and unlike temperature loading.

Analysis of Mechanical Characteristics of Polymer Sandwich Panels Containing Injection Molded and 3D Printed Pyramidal Kagome Cores

  • Yang, K.M.;Park, J.H.;Choi, T.G.;Hwang, J.S.;Yang, D.Y.;Lyu, M.-Y.
    • Elastomers and Composites
    • /
    • v.51 no.4
    • /
    • pp.275-279
    • /
    • 2016
  • Additive manufacturing or 3D printing is a new manufacturing process and its application is getting growth. However, the product qualities such as mechanical strength, dimensional accuracy, and surface quality are low compared with conventional manufacturing process such as molding and machining. In this study not only mechanical characteristics of polymer sandwich panel having three dimensional core layer but also mechanical characteristics of core layer itself were analyzed. The shape of three dimensional core layer was pyramidal kagome structure. This core layer was fabricated by two different methods, injection molding with PP resin and material jetting type 3D printing with acrylic photo curable resin. The material for face sheets in the polymer sandwich panel was PP. Maximum load, stiffness, and elongation at break were examined for core layers fabricated by two different methods and also assembled polymer sandwich panels. 3D printed core showed brittle behavior, but the brittleness decreased in polymer sandwich panel containing 3D printed core. The availability of 3D printed article for the three dimensional core layer of polymer sandwich panel was verified.

The Advanced Composite Sandwich Panels for Light Weight of Road Structures (도로구조물 경량화를 위한 복합재료 샌드위치 패널에 관한 연구)

  • Han, Bong Koo
    • International Journal of Highway Engineering
    • /
    • v.16 no.3
    • /
    • pp.1-8
    • /
    • 2014
  • PURPOSES : The purpose of this paper is to demonstrate to the practicing engineers, how to apply the advanced composite materials theory to the road structures. For general construction material used, there is certain theoretical limit in sizes. For super road structure construction, the reduction in panel weight is the first step to take in order to break such size limits. METHODS : For a typical road structures panel, both concrete and advanced composite sandwich panels are considered. The concrete panel is treated as a special orthotropic plate. RESULTS : All types of advanced composite sandwich panels are considered as a self-weights less than one tenth of that of concrete panel. The concrete panel is treated as a special orthotropic plate to obtain more accurate result. CONCLUSIONS : Advanced composite sandwich panels are considered as a self-weights less than one tenth (10%) of that of concrete panel, with deflections less than that of the concrete panel. This conclusion gives good guide line for design of the light weight of road structures.

Probabilistic assessment on buckling behavior of sandwich panel: - A radial basis function approach

  • Kumar, R.R.;Pandey, K.M.;Dey, S.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.197-210
    • /
    • 2019
  • Probabilistic buckling behavior of sandwich panel considering random system parameters using a radial basis function (RBF) approach is presented in this paper. The random system properties result in an uncertain response of the sandwich structure. The buckling load of laminated sandwich panel is obtained by employing higher-order-zigzag theory (HOZT) coupled with RBF and probabilistic finite element (FE) model. The in-plane displacement variation of core as well as facesheet is considered to be cubic while transverse displacement is considered to be quadratic within the core and constant in the facesheets. Individual and combined stochasticity in all elemental input parameters (like facesheets thickness, ply-orientation angle, core thickness and properties of material) are considered to know the effect of different degree of stochasticity, ply- orientation angle, boundary conditions, core thickness, number of laminates, and material properties on global response of the structure. In order to achieve the computational efficiency, RBF model is employed as a surrogate to the original finite element model. The stiffness matrix of global response is stored in a single array using skyline technique and simultaneous iteration technique is used to solve the stochastic buckling equations.

Higher order static analysis of truncated conical sandwich panels with flexible cores

  • Fard, Keramat Malekzadeh
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1333-1354
    • /
    • 2015
  • A higher order analytical solution for static analysis of a truncated conical composite sandwich panel subjected to different loading conditions was presented in this paper which was based on a new improved higher order sandwich panel theory. Bending analysis of sandwich structures with flexible cores subjected to concentrated load, uniform distributed load on a patch, harmonic and uniform distributed loads on the top and/or bottom face sheet of the sandwich structure was also investigated. For the first time, bending analysis of truncated conical composite sandwich panels with flexible cores was performed. The governing equations were derived by principle of minimum potential energy. The first order shear deformation theory was used for the composite face sheets and for the core while assuming a polynomial description of the displacement fields. Also, the in-plane hoop stresses of the core were considered. In order to assure accuracy of the present formulations, convergence of the results was examined. Effects of types of boundary conditions, types of applied loads, conical angles and fiber angles on bending analysis of truncated conical composite sandwich panels were studied. As, there is no research on higher order bending analysis of conical sandwich panels with flexible cores, the results were validated by ABAQUS FE code. The present approach can be linked with the standard optimization programs and it can be used in the iteration process of the structural optimization. The proposed approach facilitates investigation of the effect of physical and geometrical parameters on the bending response of sandwich composite structures.

Study on Impact Damage Behavior of Sandwich Composite Structure for aircraft (항공기 적용 샌드위치 복합재 구조의 충격 손상 거동 연구)

  • Park, Hyunbum;Kong, Changduk
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.36-41
    • /
    • 2013
  • In this study, low velocity impact analysis on composite sandwich structure was performed. Sandwich structure configuration is made of Carbon-Epoxy face sheets and foam cores. For validating study, the results of an experimental and a finite element method analysis were compared previously. From the finite element method analysis results of sandwich panel, it was confirmed that the results of analysis was reasonable. Impactor velocity to initiate damage was estimated, and in order to investigate the damage at the predicted velocity, impact analysis using finite element method was performed. According to the impact analysis results of sandwich panel, it was confirmed that the damage was generated at the estimated impact velocity. Finally, The comparison of the numerical results with those measured by the experiment showed good agreement.

The Effect of Pyro Shock on Canister with Composite Sandwich Panel (복합재 샌드위치 패널 발사관의 폭발충격 영향도 분석)

  • Choi, Wonhong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.667-673
    • /
    • 2016
  • Canister with composite sandwich panel has been suggested owing to its higher stiffness and strength over a weight for square shaped canisters. The pyro shock induced by a short time explosion inside a canister is generally considered to be the most severe source of load affecting on the entire structure. Therefore, in this study, the approach and modeling method to identify the effect of pyro shock on canister with composite sandwich panel in a numerical way were mainly discussed. Moreover, the verification was implemented through comparison with test results.

Mechanical behaviors of multi-layered foam core sandwich composite (다층 구조 폼 코아 샌드위치 복합재의 기계적 거동 연구)

  • Oh J.O.;Yoon S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.381-382
    • /
    • 2006
  • The mechanical behaviors of multi-layered foam core sandwich composite were investigated through a 3-point bending test. The sandwich specimens were obtained from sandwich panel consisting of aluminum faces and urethane foam core. Three types of sandwich specimens such as a single structure, a double structure and a triple structure were considered. The span of sandwich specimens were varied from 170mm to 350mm. According to the results, the flexural and shear properties of multi-layered sandwich composite were found to be higher than those of single-layered sandwich composite.

  • PDF

Study on Impact Damage Behavior of Turbo Fan Engine Nacelle Sandwich Composite Structure (터보팬 엔진 나셀용 샌드위치 복합재 구조물의 손상 거동 연구)

  • Kong, Chang-Duk;Park, Hyun-Bum;Lee, Seung-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.75-78
    • /
    • 2007
  • In this study, low velocity impact analysis on Turbo Fan Engine composite sandwich structure was performed. Sandwich structure configuration is made of carbon/epoxy face sheets and foam cores. For validating study, the results of an experimental and of a Finite Element Method analysis were compared previously. From the Finite Element Method analysis results of sandwich panel, it was confirmed that the result of analysis was reasonable. Impactor velocity to initiate damage was estimated, and in order to investigate the damage at the predicted velocity, impact analysis using Finite Element Method was performed. According to the impact analysis results of sandwich panel, it was confirmed that the damage was generated at the estimated impact velocity.

  • PDF