• Title/Summary/Keyword: Sandwich Structures

Search Result 473, Processing Time 0.029 seconds

Simple Method of Vibration Analysis of Three Span Continuous Composite Slab Bridges with Elastic Intermediate Supports (탄성지지된 3경간 연속 복합슬래브교량의 간단한 진동해석)

  • Han, Bong Koo;Kim, Duk Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.317-324
    • /
    • 2005
  • The specially orthotropic plate theory is used to analyse three-span continuous composite slab bridges with elastic intermediate supports. A method of calculating the natural frequency corresponding to the first mode of vibration of beams and tower structures, with irregular cross sections and with arbitrary boundary conditions, was developed and the result of application of this method to the three-span continuous composite slab bridges with elastic intermediate supports is presented. This type of bridge represents either concrete or sandwich type three-span bridge on polymeric supports for passive control or on actuators for active control. Any method may be used to obtain the deflection influence surfaces needed for this vibration analysis. The finite difference method is used for this purpose in this paper. The influence of flexural stiffnesses and the modulus of the foundation are studied.

Structural response of rectangular composite columns under vertical and lateral loads

  • Sevim, Baris
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.287-298
    • /
    • 2017
  • The present study aims to determine the structural response of full scaled rectangular columns under both of vertical and lateral loads using numerical methods. In the study, the composite columns considering full concrete filled circular steel tube (FCFRST) and concrete filled double-skin rectangular steel tube (CFDSRST) section types are numerically modelled using ANSYS software. Vertical and lateral loads are applied to models to assess the structural response of the composite elements. Also similar investigations are done for reinforced concrete rectangular (RCR) columns to compare the results with those of composite elements. The analyses of the systems are statically performed for both linear and nonlinear materials. In linear static analyses, both of vertical and lateral loads are applied to models as only one step. However in nonlinear analyses, while vertical loads are applied to model as only one step, lateral loads are applied to systems as step by step. The displacement and stress changes in some critical nodes and sections and contour diagrams are reported by graphs and figures. At the end of the study, it is demonstrated that the nonlinear models reveal more accurate result then those of linear models. Also, it is highlighted that composite columns provide more and more safety, ductility compared to reinforced concrete column.

Broadband metamaterial absorber using resistive layers

  • Kim, Y.J.;Yoo, Y.J.;Hwang, J.S.;Son, H.M.;Rhee, J.Y.;Kim, K.W.;Lee, Y. P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.359.1-359.1
    • /
    • 2016
  • The electromagnetic (EM) properties of media, such as propagation, focusing and scattering, strongly rely on the electric permittivity and the magnetic permeability of media. Recently, artificially-created metamaterials (MMs) composed of periodically-arranged unit cells with tailored electric permittivity and magnetic permeability have drawn wide interest due to their capability of adjusting the EM response. MM absorbers using the conventional sandwich structures usually have very high absorption at a certain frequency, and the absorption properties of MMs can be adjusted simply by changing the geometrical parameters of unit cell. In this work, we suggested an incident-angle-independent broadband perfect absorber based on resistive layers. We analyze the absorption mechanism based on the impedance matching with the free space and the distribution of surface currents at specific frequencies. From the simulation, the absorption was expected to be higher than 96% in 1.4-6.0 GHz. The corresponding experimental absorption was found to be higher than 96% in 1.4-4.0 GHz, and the absorption turned out to be slightly lower than 96% in 4.0-6.0 GHz owing to the irregularity in the thickness of resistive layers.

  • PDF

FEM Analysis of Smart Skin Structure Specimen (스마트 스킨 구조물 시편의 유한요소 해석)

  • 전지훈;황운봉
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.59-65
    • /
    • 2003
  • FEM analysis of the smart skin structure, and application of the sandwich structures investigated. The honeycomb manufactures only provide stillness of thickness direction and transverse shear modulus. Although these are dominant mechanical properties. the other mechanical properties are needed in FEM analysis. Hence, this work shows procedures of obtaining those mechanical properties. Honeycomb material was assumed to be ar, isotropic material and properties are estimated by its dominant honeycomb properties. The other honeycomb properties are then obtained by mechanical properties of Nomex. Buckling test and three point bending test were simulated by ABAQUS. Both the shell and solid element models were used. The results were compared with experimental results and analytical approaches. They showed good agreements. This study shows a guideline of FEM analysis of smart skin structure using commercial a FEM package.

Analysis of Failure Mechanism for Wire-woven Bulk Kaogme (Wire-woven Bulk Kagome 의 파손 메커니즘 분석)

  • Lee, Byung-Kon;Choi, Ji-Eun;Kang, Ki-Ju;Jeon, In-Su
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1690-1695
    • /
    • 2007
  • Lightweight metallic truss structures with open, periodic cell are currently being investigated because of their multi-functionality such as thermal management and load bearing. The Kagome truss PCM has been proved that it has higher resistance to plastic buckling, more plastic deformation energy and lower anisotropy than other truss PCMs. The subject of this paper is an examination of the failure mechanism of Wire woven Bulk Kagome(WBK). To address this issue, the out-of-plane compressive responses of the WBK has been measured and compared with theoretical and finite element (FE) predictions. For the experiment, 2 multi-layered WBK are fabricated and 3 specimens are prepared. For the theoretical analysis, the brazed joints of each wire in WBK are modeled as the pin-joint. Then, the peak stress of compressive behavior and elastic modulus are calculated based on the equilibrium equation and energy method. The mechanical structure with five by five cells on the plane are constructed is modeled using the commercial code, PATRAN 2005. and the analysis is achieved by the commercial FE code ABAQUS version 6.5 under the incremental theory of plasticity.

  • PDF

A Study on Roll Forming Technology for Inner Structure Plate with Micro Dimple (미세 딤플 내부구조재 제작을 위한 롤 성형기술 연구)

  • Je T.J.;Kim H.J.;Kim B.H.;Huh B.W.;Seong D.Y.;Yang D.Y.;Choi D.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.4 s.85
    • /
    • pp.326-332
    • /
    • 2006
  • Sandwich structures, which are composed of a thick core between two faces, are commonly used in many engineering applications because they combine high stiffness and strength with low weight. Depending on the sheets by a rolling process, which is a more efficient and economical approach compared to other types of processes, has become an increasingly important subject of study. In this paper, we made a roll forming machine which progressive forming possible and force measurement for a roll forming of the sheet metal forming. And we designed a roll molding that arrayed of embossing size 3mm in diameter fabricate micro dimple inner structure plate. We carried out forming experiment such as array change and thickness to sts304 sheet. Ultimately, this research developed inner structure plate of high stiffness.

Experimental discussion on the installation of filler wall for sound insulation measurements of shipboard windows (선박용 창의 차음성능 측정용 충진벽체 설치에 관한 실험적 고찰)

  • Kim, Sang-Ryul;Kang, Hyun-Ju;Kim, Hyun-Sil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.276-279
    • /
    • 2008
  • In order to measure sound transmission loss (STL) of a shipboard window of small size, a special partition is built into the test opening between two reverberation rooms and the specimen is placed in that partition. For high sound insulation, the filler wall often has multi-layered structure such as double-brick wall or buckhead structure with thick steel plate, absorptive material, and sandwich panels. This paper discusses the installation method of a multi-layered filler wall that consist of gypsum boards, lead plates, and glass wool. The experimental results of various wall structures are introduced. The comparison between the results show that the sound bridge effect plays a significant role in lowering the maximum STL of the filler wall. It is also found that the higher the sound insulation performance of the filler wall is, the more important the franking transmission through other side wall of the test facility is.

  • PDF

Energy absorption characteristics of diamond core columns under axial crushing loads

  • Azad, Nader Vahdat;Ebrahimi, Saeed
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.605-628
    • /
    • 2016
  • The energy absorption characteristics of diamond core sandwich cylindrical columns under axial crushing process depend greatly on the amount of material which participates in the plastic deformation. Both the single-objective and multi-objective optimizations are performed for columns under axial crushing load with core thickness and helix pitch of the honeycomb core as design variables. Models are optimized by multi-objective particle swarm optimization (MOPSO) algorithm to achieve maximum specific energy absorption (SEA) capacity and minimum peak crushing force (PCF). Results show that optimization improves the energy absorption characteristics with constrained and unconstrained peak crashing load. Also, it is concluded that the aluminum tube has a better energy absorption capability rather than steel tube at a certain peak crushing force. The results justify that the interaction effects between the honeycomb and column walls greatly improve the energy absorption efficiency. A ranking technique for order preference (TOPSIS) is then used to sort the non-dominated solutions by the preference of decision makers. That is, a multi-criteria decision which consists of MOPSO and TOPSIS is presented to find out a compromise solution for decision makers. Furthermore, local and global sensitivity analyses are performed to assess the effect of design variable values on the SEA and PCF functions in design domain. Based on the sensitivity analysis results, it is concluded that for both models, the helix pitch of the honeycomb core has greater effect on the sensitivity of SEA, while, the core thickness has greater effect on the sensitivity of PCF.

Simple Method of Vibration Analysis of Three Span Continuous Reinforced Concrete Bridge with Elastic Intermediate Support (탄성지지된 3경간 철근콘크리트 교량의 간단한 진동해석법)

  • Kim, Duk-Hyun;Han, Bong-Koo
    • Composites Research
    • /
    • v.17 no.3
    • /
    • pp.23-28
    • /
    • 2004
  • A method of calculating the natural frequency corresponding to the first mode of vibration of beams and tower structures, with irregular cross sections and with arbitrary boundary conditions was developed and reported by Kim, D. H. in 1974. In this paper, the result of application of this method to the three span continuous reinforced concrete bridge with elastic intermediate supports is presented. Such bridge represents either concrete or sandwich type three span bridge on polymeric supports for passive control or on actuators for active control. The concrete slab is considered as a special orthotropic plate. Any method may be used to obtain the deflection influence surfaces needed for this vibration analysis. Finite difference method is used for this purpose, in this paper, The influence of the modulus of the foundation and $D_{22}$, $D_{12}$, $D_{66}$ stiffnesses on the natural frequency is thoroughly studied.

Identification of Novel Cupredoxin Homologs Using Overlapped Conserved Residues Based Approach

  • Goyal, Amit;Madan, Bharat;Hwang, Kyu-Suk;Lee, Sun-Gu
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.127-136
    • /
    • 2015
  • Cupredoxin-like proteins are mainly copper-binding proteins that conserve a typical rigid Greek-key arrangement consisting of an eight-stranded β-sandwich, even though they share as little as 10-15% sequence similarity. The electron transport function of the Cupredoxins is critical for respiration and photosynthesis, and the proteins have therapeutic potential. Despite their crucial biological functions, the identification of the distant Cupredoxin homologs has been a difficult task due to their low sequence identity. In this study, the overlapped conserved residue (OCR) fingerprint for the Cupredoxin superfamily, which consists of conserved residues in three aspects (i.e., the sequence, structure, and intramolecular interaction), was used to detect the novel Cupredoxin homologs in the NCBI non-redundant protein sequence database. The OCR fingerprint could identify 54 potential Cupredoxin sequences, which were validated by scanning them against the conserved Cupredoxin motif near the Cu-binding site. This study also attempted to model the 3D structures and to predict the functions of the identified potential Cupredoxins. This study suggests that the OCR-based approach can be used efficiently to detect novel homologous proteins with low sequence identity, such as Cupredoxins.