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Simple Method of Vibration Analysis of Three Span Continuous Composite Slab
Bridges with Elastic Intermediate Supports.
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ABSTRACT : The specially orthotropic plate theory is used to analyse three-span continuous composite slab bridges with

-

elastic intermediate supports. A method of calculating the natural frequency corresponding to the first mode of vibration
of beams and tower structures, with irregular cross sections and with arbitrary boundary conditions. was developed and
the result of application of this method to the three-span continuous composite slab bridges with elastic intermediate
supports is presented. This type of bridge represents either concrete or sandwich type three-span bridge on polymeric
supports for passive control or on actuators for active control. Any method may be used to obtain the deflection influence
surfaces needed for this vibration analysis. The finite difference method is used for this purpose in this paper. The
influence of flexural stiffnesses and the modulus of the foundation are studied.
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1. Introduction There are several means for slab system analysis
such as

The problem of deteriorated highway reinforced
concrete slab is very serious all over the world. (1) Beam strip method.
Before making any decision on repair work, reliable (2) Composite beam theory between
non-destructive evaluation is necessary. One of the concrete slab and steel beam, and
dependable methods is to evaluate the in-situ (3) Gird analysis method for cross beams and
stiffness of the slab by means of obtaining the girders.
natural frequency. By comparing the in-situ stiffness
with can be estimated rather accurately. The 3.1 Elevated Expressway in seoul, designed

the one obtained at the design stage. the degree of  and built in 1967, used less than half of steel
damage required by other best design. at that time (Kim,
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1966). The methods used were,

(1) Grid analysis

(2) Composite action

(3) Use of welding

(4) Use of hybrid materials

(5) Use of high tension bolt and others.

In this reference (Kim, 1966),
design methods are studied and compared. An

several existing

extensive references are also given.

A method of calculating the natural frequencies
corresponding to the modes of vibration of beams
and tower structures with irregular cross sections
and arbitrary boundary conditions was developed and
reported. (Kim, 1967, 1974)

In case of a bridge grid system with girders and
cross-beams, tables and methods by Leonhard,
Homberg, Massonnet, Watanabe, Kim (Kim, 1966,
1967Han and Kim 2001), and others can be used.
Use of orthotropic plate theory in bridge design was
reported by Chu Adotte
reported second order theory in orthotropic plates.

and Krishnamoorthy.
Hongladaromp et al. reported analysis of elasto
-plastic grid system.

Many of the bridge and building floor systems,
including the girders and cross-beams, and decks
behave as the specially orthotripic plates which have
(0°, 90°,0°)r fiber orientations.

Recently, use of polymeric bridge supports has
become quite popular. Unlike the metal hinges and
rollers, these polymers behave like elastic supports.
The actuators for the active control of the bridge
behave, at least partially, as the elastic supports.
The reinforced concrete slab can be assumed as a
special orthotropic plate, as a close approximation,
assuming that the influence of B, Bs, D) and
D, stiffnesses are negligible. The senior author has
reported that some laminate orientations such as
[a/B],,[a/B/al, [a/B/B/a/a/B],, and
la/B/B/y/a/a/B), with a=— ,and y=0°
or 90°,

and with increasing r, have decreasing

values of By, By, Dig, and Do stiffnesses,

where a, B, and Yy are the fiber orientations in
degrees measured from the laminate axes, positive in
the counterclockwise direction. r is an integer, and

By and D

i are the bending-stretching coupling
stiffness matrix and the flexural stiffness matrix,

respectively. D, expresses the relation between the

stress couples, M;, and the curvatures, x,. B;
relates M to the mid-surface strains, €,; and the
Nz'jto K Bl(i and B26

cause bhending-shearing and stretching-

in-plane stress resultants,

twisting coupling. D)g and Dy cause bending

twisting coupling. Such laminates given above may
be very useful when one tries to apply the advanced
composite materials to new constructions such as
building slabs, bridge decks, and so on. One can
obtain the advantages of the advanced composite
materials using simplified equations.

For such laminates, the three partial differential
equations for the laminate bending,

EE 5° 0%u
Ay a‘;+2Aw oxdy T Aw 5
+A16 a 7 +(Al)+Abﬁ) axay
a) a'* a'*w
—(Blg+2366)—(97£’;—3268—y7§§’ =0 (1)
8 azu
0%y 3% 9%
+ Ag 9x v + Ay 9y’
83
— By L8 (Bt 2By)
B aiﬂw B ai%w _
DH% a w -~ 2Dyt 2D a
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9t 4w 3°
+4D26 Ox aw? +D22 a 4 Bll axu
0° 9°
3316 Ox 22{ (BIZ+ZBGG) a a 2 — Dyg aylg
_B (B 9+2B ) 3 agv-)
16 a 12 66 a 26 axayﬂ
31)
— By, 377 =q(x,y) (3)

can be reduced to one equation, for the special

orthotropic
plate,
3* tw d'w
D=5 +2D; Sxlayt TP =atn ). (@)
\Vhele Dl DH,D) D)),D3 (D19+2D66)

However such plates will have different stress
distribution through each ply of the laminate, quite
different from the "real special orthotropic plates.

Several materials should be tested to find out the
best type of materials for the future bridge decks,
especially advanced composite bridge decks. Such
plates are subject to the concentrated mass/masses
in the form of traffic loads, or the test equipments
such as accelerator in addition to their own masses.
Analysis of such problems is usually very difficult.
Most of the civil and architectural structures are
large in sizes and the number of laminae is large,
even though the thickness to length ratio is small
enough to allow to neglect the transverse shear
deformation effect in stress analysis. For such
plates, there are enough number of fiber orientations
for which theories for special orthotropic plates can
be applied, (Kim. 1996, Han and Kim, 2001) and
simple formulae developed by the author can be used
(Kim , 1995).

In case of a laminated composite plate with
boundary conditions other than Navier or Levy
solution types, or with irregular cross section, or
with nonuniform mass including point masses,

analytical solution is very difficult to obtain.
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Numerical method for eigenvalue problems are also
very much involved in seeking such a solution.

The basic concept of the Rayleigh method, the
most popular analytical method for vibration analysis
of a single degree of freedom system, is the principle
of conservation of energy: the energy in a free
vibrating system must remain constant if no
damping forces act to absorb it. In case of a beam,
which has an infinite number of degrees of freedom,
it is necessary to assume a shape function in order
to reduce the beam to a single degree of freedom
system (Clough, 1995). The frequency of vibration
can be found by equating the maximum strain
energy developed during the motion to the maximum
yields the
solution either equal to or larger than the real one.
Recall that Rayleigh's quotient =1 (Kim. 1995, pp.
189~191). For a complex beam, assuming a correct

kinetic energy. This method, however,

shape function is not possible. In such cases, the
solution obtained is larger than the real one.

A simple but exact method of calculating the
natural frequency corresponding to the first mode of
vibration of beam and tower structures with irregular
cross—sections and  attached mass/masses was
developed and was reported by Kim, D. H. in 1974,
This method consists of determining the deflected
mode shape of the member due to the inertia force
under resonance condition. Beginning with initially
“guessed mode shape, “exact’ mode shape is obtained
by the process similar to iteration. Recently, this
method was extended to two dimensional problems
including composite laminates, and has been applied
to composite plates with various boundary conditions
with/without shear deformation effects and reported
at several international conferences including the
Eighth  Structures Congress(1990) and Fourth
Materials Congress(1996) of American Society of
Civil Engineers.

In this paper, the result of application of this
method to the subject problem is presented.
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2. Method of Analysis
2.1 Vibration Analysis

In this paper, the result of application of this
method to the subject problem is presented.

Since the method of analysis used for this paper is
given, in detail. in the author’s book (Kim, 1995), it
is not repeated here.

2.2 Finite Difference Method

The method used in this paper requires the
reliable
subject
problem, F.D.M. is applied to the governing equation

deflection influence surfaces. Since no

analytical method is available for the

of the special orthotropic plates,

'w *w dw
D +2D-. >+ D.
1 ax4 2 3 8x28y2 2 ay4
— gl y) — haw+ Ne-O o Ny 07 o, 8w
’ ox’ v’ oxy

where D, =D, Dy= Dy, D;3= (D, +2Dy).

The number of the pivotal points required for the
forth order derivatives in the case of the order of
error A% where Ais the mesh size, is five for the
central differences. This makes the procedure at the
boundaries complicated. In order to solve such
problem. the three simultaneous partial differential
equations of equilibrium with three dependent
Mx, and My, are used instead of
Equation (5) with N, =N,=N_=0 (Kim, 1966,

1967).

variables, w,

0 Mx . dtw 0*My
Dll 3%2 4D66 ax‘ZayZ +D22 ay2
= q(z,y) + kw(z,y) (6)
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5 _D22 (9_;42)

My=—D, 9xl

(8)

If F.D.M. is applied to these equations, the
resulting matrix equation is very large in sizes, but
the tridiagonal matrix calculation scheme used by
Kim, D. H (Kim, 1966, 1967, 1974) is very efficient
to solve such equations.

In order to confirm the accuracy of the F.D.M.,
[A/B/A], type laminate with aspect ratio of
a/b=1m/Im=1 is considered. The material properties
are

E, =67.36 GPa

vy = 0.272

G, = 3.0217 GPa,

E, = 812 GPa
Vo, = 0.0328,

The thickness of a ply is 0.005m. As the r
increases. By, Bog, Dyg, and Do decrease and the
equations for the special orthotropic plates can be
used. For simplicity, it is assumed that A=0°
B=90°, and r=1. Then D,;=18492.902 N-m..

Since one of the few efficient analytical solutions
of the special orthotropic plate is Navier solution,
and this is good for the case of the four simply
supported edges, F.D.M. is used to solve this
problem and the result is compared with the Navier
solution. The mesh size is Ax=a/10=0.1m,
Ay=5/10=0.1m. The deflection at (x.y), under
the uniform load of 100 N/m*, the origin of the
coordinates being the corner of the plate, is
obtained, and the ratio of the Navier solution to the
F.D.M. solution is given in Table 1.

Table 1 Deflection ratio of Navier solution to F.D.M. solution

Navier / F.D.AI

xim)
vim
0.1 {0.1003%46E-01]0.1004916E+01 |0.1004713E~01 | 0.1004916E-01]0.100546E - 01
0.3 {0.1001279E-01]0.1000028E-01 | 0.9996814E+01 | 0. 1000028E +01 | 0.1001279E +01
0.5 [0.1000134E~01{0.9989528E-010.9985780E 01| 0,9989530E +01 | 0, 1000134E +01
0.7 {0.1001279E~+01]0.1000028E-01|0.9996815E 01 | 0.1000028E+0110.1001279E - 01
0.9 |0.1005946E+01{0.1004916E+01 | 0.10047 LHE =011 0.1004916E+01| 0. 1005%46E ~01

0.1 0.3 0.5 0.7 0.9

I 173 35(8d 76%&) 20054 68



Calculation is carried out with different mesh sizes
and the maximum errors at the center of the plate
are as follows :

10x10 case : 0.14% 20x20 case : (.035%

40x40 case - 0.009%
The error is less than 1%. This is smaller than
the predicted errors:

(A,)2=(0.1)*=0.01=1%
(A,)%=1(0.05)*=0.0025=0.25%
(A,)2=1(0.025)?=0.000625=0.0625%

3. Numerical Examination

3.1 Structure under Consideration

The bridge considered is as shown in Fig. 1.

free slmple

/ /

/

100 m 10

Fig. 1. Three span continuous slab bridge

The location of the truck loading is as shown in
Fig. 2.
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Fig. 2. Location of truck loading
Fig. 3 shows the cross section of the slab with

unit width.
fu =210kgf/cm® = 20,5942926 MPa and
E.=15,000Vf,=21.317118060 GPa.

"
—
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Fig. 3 Cross section of the slab with unit width

Three different concepts are adopted for obtaining
the stiffnesses, D;. For all cases, the effect of the
bending extension coupling stiffness, B;, is assumed

as negligible.

Case 1. Balanced design using the transformed
area for steel in calculating the moment
of inertia of the cross—section.

Case 2. With E,= 15,0007, = 21.317118060 GPa
and E, = 199.92 GPa, and with concrete
QH:EC/(I‘U%) and Steel Q]]:ES, the

typical formulas for D are used.

Case 3. Using the cracked section concept by the
maximum moment, the moment of inertia
obtained to

of thecross section is

calculate D,

Table 2 shows the flexural stiffnesses of three
cases.

Table 2. Flexural stiffnesses of three cases (unit : N-m)

Case I
. Case 1 Case 2 Case 3
Stiffness
Dy, 351761502.8 | 323428383.7 | 323416426.7
D, 1556657081 151828300.8 11518270478
Dy 90690632.4 | 90690632.4 | 90690632 4
D 206573097.2 | 206573097.2 | 206573097.2

For all cases, the uncracked section is used to

obtain Dy and the
2.5t/ m*>0.65m

concrete

1.625¢/m*=15,925

TxetE =2 17 35(8H 76%) 2005 6¥
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deflections at the wheel load points for three cases,
when the molulus of foundation, k =14,505 x 10°
N/m®, are given in Table 3.

Table 3 The deflections at wheel loading points for
three-cases (unit © m)

at the wheel load points for three sub-Case 2, when
the modulus of foundation, k=14.505 x 10° N/m",

are given in Table 0.

Table 6. The deflections at wheel loading points for three
sub-cases of Case 2 (unit : m)

Case
. Case 1 (Case 2 Case 3
Load Poin

1 0.2786E-03 | 0.2955E-03 | 0.2955E-03
2 0.2314E-03 | 0.2458E-03 | 0.2458E-03
3 0.2132E-02 | 0.2300E-02 | 0.2300E-02
4 0.1901E-02 | 0.2054E-02 | 0.2045E-02
5 0.3900E-03 | 0.4155E-03 | 0.4155E-03
6 (0.3288E-03 | 0.3504E-03 | 0.3504E-03

Case
) Case 2-1 Case 2-2 Case 2-3
Load Point
1 0.2955E-03 | 0.2894E-03 | 0.4409E-03
2 0.2458E-03 | 0.2411E-03 | 0.3177E-03
3 0.2300E-02 | 0.2240E-02 | 0.2778E-02
4 0.2054E-02 | 0.2010E-02 | 0.2319E-02
5 0.4155E-03 | 0.4030E-03 | 0.5739E-03
6 0.3504E-03 | 0.3410E-03 | 0.4426E-03

Table 4 shows the natural frequencies of three-
cases, under the same value of k, k=14,505 x 10°

2

N/m".

Table 4. The natural frequencies for three-cases

Case Natural Frequency (rad/sec)
Case 1 0.1292903E+02
Case 2 0.1233828E+02
Casc 3 0.1233805E+02

Table 5. The stiffnesses of three sub-cases, for Case 2

(Unit = N-m)
Case
. Case 2-1 Case 2-2 Case 2-3
Stiffness
Dy 323428383.7 | 323428383.7 |323428383.7
D, 151828300.8 | 266228356.0 |323428383.7
Dy, 90690632.4 | 90690632.4 0.
Dy 206573097.2 | 206573097.2 0.

In order to study the influence of D, Dy, and

D66

stiffnesses,

considered as Table b.

3.2 Numerical Result

three sub-cases for

Case-2 are

3.2.1 Influence of D,,, D,,, Dy Stiffnesses
The applied load is the concrete self-weight plus

the wheel loads as shown in Fig. 2. The deflections

Table 7. The natural frequencies for three sub-cases of

Case 2
Case Natural Frequency (rad/sec)
Case 2- 0.1233830E+02

2-1
Case 2-2 0.1257711E+02
2 0.1101777TE+02

Table
sub-cases, under the same value of k, k=14,505 x
10° N/m”.

7 shows the natural frequencies of three

3.2.2 Influence of the Modulus of Foundation

The influence of the modulus of foundation, k, is
studied by changing k values from 14,505 x 107
N/m’” to 14,505 x 107 N/m’.

Table 8 shows the deflections at the wheel load

points for Case 2-1, under changing values of k.

Table 8. Deflection at loading points for Case 2-1 (unit : m)

Load Poin}E<N/m‘) 14,505x10% | 14.505x10° 14,505x107
1 0.1573E-01 | 0.4571E-03 | 0.2774E-03
2 0.1502E-01 | 0.3951E-03 | 0.2296F-03
3 0.1969E-01 | 0.2499E-02 | 0.2272E-02
4 0.1866E-01 | 0.2242E-02 | 0.2029E-02
5 0.1695E-01 | 0.6005E-03 | 0.3944E-03
6 0.1608E-01 | 0.5224E-03 | 0.3311E-03

H M17H 35(8d 76%) 20054 6



Table 9. The natural frequency for Case 2-1
(unit :rad/sec)

k (N/m") Natural Frequency(rad/sec)
14.505x10° 0.8068337E+01
14.505x10° 0.1232987E+02
14.505x10" 0.1233943E+02

Table 9 shows the natural frequencies for Case
Fig. 4 is the
graphical presentation of Table 8, and Fig. 5 is that
of Table 9.

2-1, under changing values of k .
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Fig. 4. The deflection at loading Fig. 5. The natural frequency
points for Case 2-1 for Case 2-1

4. CONCLUSION

In this paper, the simple and accurate method of
vibration analysis developed by Kim, D. H. is
presented. The presented method is simple to use
but extremely accurate. The boundary condition can
be arbitrary. Both stiffness and mass of the element
can be variable. One can use any method to obtain
the deflection influence coefficients. The accuracy of
the solution is dependent on only that of the
influence coefficients needed for this method. One
should recall that obtaining the deflection influence
coefficients is the first step in design and analysis of
a structure. The merit of the presented method is
that it uses such influence coefficient values, used
already for calculating deflection, slope, moment,
and shear to obtain the natural frequency of the

structure. When the plate has concentrated mass or
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masses, one can Simply add these masses to the
plate mass and use the same deflection influence
This
method is applied to the three span continuous

surfaces to obtain the natural frequency.

composite slab bridges with elastic intermediate
supports.

Recently, use of polymeric bridge support has
become quite popular. Unlike the metal hinges and
rollers, these polymers behave like elastic support.
The actuators for the active control of the bridge,
behave, at least partially, as the elastic support.

The finite difference method (F.D.M.) is used to
obtain the deflection influence surfaces in this paper.
In order to reduce the required number of pivotal
points, the three simultaneous partial differential

equations of equilibrium with three dependent

variables, w, M, and M, are used instead of the
fourth order partial differential equation for the
special orthotropic plate. If F.D.M. is applied to
these equations, the resulting matrix equation is
huge in size, but the tridiagonal matrix calculation
scheme used by Kim, D. H. is very efficient to solve
Dy, and Dgg and

stiffnesses, and the modulus of foundation, on the

such problems. The effect of Dy,

natural frequency is thoroughly studied and the
results are given in tables to provide a guideline to

the practicing engineers.
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