• Title/Summary/Keyword: Sandwich Structure

Search Result 495, Processing Time 0.029 seconds

High-temperature Semiconductor Bonding using Backside Metallization with Ag/Sn/Ag Sandwich Structure (Ag/Sn/Ag 샌드위치 구조를 갖는 Backside Metallization을 이용한 고온 반도체 접합 기술)

  • Choi, Jinseok;An, Sung Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • The backside metallization process is typically used to attach a chip to a lead frame for semiconductor packaging because it has excellent bond-line and good electrical and thermal conduction. In particular, the backside metal with the Ag/Sn/Ag sandwich structure has a low-temperature bonding process and high remelting temperature because the interfacial structure composed of intermetallic compounds with higher melting temperatures than pure metal layers after die attach process. Here, we introduce a die attach process with the Ag/Sn/Ag sandwich structure to apply commercial semiconductor packages. After the die attachment, we investigated the evolution of the interfacial structures and evaluated the shear strength of the Ag/Sn/Ag sandwich structure and compared to those of a commercial backside metal (Au-12Ge).

A Study on The Bending Characteristic of Sandwich Sheet Metal with Dimple Type-Inner-Structure (딤플형 내부구조재를 갖는 접합판재의 굽힘 특성연구)

  • Kim, H.G.;Oh, S.K.;Yoo, J.S.;Seong, D.Y.;Chung, W.J.;Kim, J.H.
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.31-34
    • /
    • 2008
  • The L-bending of inner-structure bonded sandwich sheet metal is examined to reduce springback and defects of bent parts. The specimen is composed of top and bottom layers and a middle layer with dimple type-inner-structure and each layer is bonded by resistance welding. This specimen with hollow type-inner-structure shows different bending characteristics from the conventional sandwich sheet metals with solid type-inner-structure. The experiments were conducted for two kinds of working conditions, that is, clearance and movement of first bent specimen for second bending. The deformed profile, bend angle and springback were investigated and compared and then the proper working conditions for L-bending of sandwich sheet metal were prosed.

  • PDF

Multi-objective geometry optimization of composite sandwich shielding structure subjected to underwater shock waves

  • Zhou, Hao;Guo, Rui;Jiang, Wei;Liu, Rongzhong;Song, Pu
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.211-224
    • /
    • 2022
  • Multi-objective optimization was conducted to obtain the optimal configuration of a composite sandwich structure with honeycomb-foam hybrid core subjected to underwater shock waves, which can fulfill the demand for light weight and energy efficient design of structures against underwater blast. Effects of structural parameters on the dynamic response of the sandwich structures subjected to underwater shock waves were analyzed numerically, from which the correlations of different parameters to the dynamic response were determined. Multi-objective optimization of the structure subjected to underwater shock waves of which the initial pressure is 30 MPa was conducted based on surrogate modelling method and genetic algorithm. Moreover, optimization results of the sandwich structure subjected to underwater shock waves with different initial pressures were compared. The research can guide the optimal design of composite sandwich structures subjected to underwater shock waves.

Fabrication of Metallic Sandwich Plates with Inner Dimpled Shell Structure and Static Bending Test (딤플형 내부구조 금속 샌드위치 판재의 제작 및 정적 굽힘 실험)

  • Seong Dae-Yong;Jung Chang-Gyun;Yoon Seok-Joon;Lee Sang-Hoon;Ahn Dong-Gyu;Yang Dong-Yol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.653-661
    • /
    • 2006
  • Metallic sandwich plates with various inner cores have important new features with not only ultra-light material characteristics and load bearing function but also multifunctional characteristics. Because of production possibility on the large scale and a good geometric precision, sandwich plates with inner dimpled shell structure from a single material have advantages as compared with other solid sandwich plates. Inner dimpled shell structures can be fabricated with press or roll forming process, and then bonded with two face sheets by multi-point resistance welding or adhesive bonding. Elasto-plastic bending behavior of sandwich plates have been predicted analytically and measured. The measurements have shown that elastic perfectly plastic approximation can be conveniently employed with less than 10% error in elastic stiffness, collapse load, and energy absorption. The dominant collapse modes are face buckling and bonding failure after yielding. Sandwich plates with inner dimpled shell structure can absorb more energy than other types of sandwich plates during the bending behavior.

Study of reinforcement effect of sandwich plate structure according to core shape (샌드위치형 판 구조물의 코어형상에 따른 보강효과에 관한 연구)

  • 한근조;안성찬;심재준;김진영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.740-743
    • /
    • 2001
  • Sandwich structure is widely used in various fields of industry due to its excellent strength and stiffness compared with weight. We studied the sandwich structure which has honeycomb core type. We are concerned about its buckling and bending stress with respect to its side length, thickness and the height ratio of its unit core. After obtaining the buckling critical load of unit core, we applied it to the sandwich structure to observe the bending behavior. When we compared the buckling with bending stress under buckling critical load, we observed that models of which length ratio of unit honeycomb core, A, is lower than 0.04 and the thickness of core, t, is thicker than 0.09 mm, is subjected to the ultimate stress by bending before buckling.

  • PDF

Using Artificial Neural Network in the reverse design of a composite sandwich structure

  • Mortda M. Sahib;Gyorgy Kovacs
    • Structural Engineering and Mechanics
    • /
    • v.85 no.5
    • /
    • pp.635-644
    • /
    • 2023
  • The design of honeycomb sandwich structures is often challenging because these structures can be tailored from a variety of possible cores and face sheets configurations, therefore, the design of sandwich structures is characterized as a time-consuming and complex task. A data-driven computational approach that integrates the analytical method and Artificial Neural Network (ANN) is developed by the authors to rapidly predict the design of sandwich structures for a targeted maximum structural deflection. The elaborated ANN reverse design approach is applied to obtain the thickness of the sandwich core, the thickness of the laminated face sheets, and safety factors for composite sandwich structure. The required data for building ANN model were obtained using the governing equations of sandwich components in conjunction with the Monte Carlo Method. Then, the functional relationship between the input and output features was created using the neural network Backpropagation (BP) algorithm. The input variables were the dimensions of the sandwich structure, the applied load, the core density, and the maximum deflection, which was the reverse input given by the designer. The outstanding performance of reverse ANN model revealed through a low value of mean square error (MSE) together with the coefficient of determination (R2) close to the unity. Furthermore, the output of the model was in good agreement with the analytical solution with a maximum error 4.7%. The combination of reverse concept and ANN may provide a potentially novel approach in designing of sandwich structures. The main added value of this study is the elaboration of a reverse ANN model, which provides a low computational technique as well as savestime in the design or redesign of sandwich structures compared to analytical and finite element approaches.

Modal analysis of FG sandwich doubly curved shell structure

  • Dash, Sushmita;Mehar, Kulmani;Sharma, Nitin;Mahapatra, Trupti R.;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.6
    • /
    • pp.721-733
    • /
    • 2018
  • The modal frequency responses of functionally graded (FG) sandwich doubly curved shell panels are investigated using a higher-order finite element formulation. The system of equations of the panel structure derived using Hamilton's principle for the evaluation of natural frequencies. The present shell panel model is discretised using the isoparametric Lagrangian element (nine nodes and nine degrees of freedom per node). An in-house MATLAB code is prepared using higher-order kinematics in association with the finite element scheme for the calculation of modal values. The stability of the opted numerical vibration frequency solutions for the various shell geometries i.e., single and doubly curved FG sandwich structure are proven via the convergence test. Further, close conformance of the finite element frequency solutions for the FG sandwich structures is found when compared with the published theoretical predictions (numerical, analytical and 3D elasticity solutions). Subsequently, appropriate numerical examples are solved pertaining to various design factors (curvature ratio, core-face thickness ratio, aspect ratio, support conditions, power-law index and sandwich symmetry type) those have the significant influence on the free vibration modal data of the FG sandwich curved structure.

Effects of Anisotropic Properties of Composite Skins on Electromagnetic Wave Propagation in the Foam Core Sandwich Structures (폼 코어 샌드위치 구조물에서 복합재료 스킨의 이방성 특성이 전자기파 투과 특성에 미치는 영향에 관한 연구)

  • 신현수;전흥재
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.234-237
    • /
    • 2001
  • In this study, efforts were made to understand the propagation of electromagnetic wave through the foam core sandwich structure by the analytical model. Foam core sandwich structure is composed of glass/epoxy composite skins and foam core. Transmittance and reflectance of the arbitrary linearly polarized incident TEM waves through the unidirectional composites, foam and foam core sandwich structures were determined as functions of thickness, fiber orientation of composites, incident angle and polarization angle by the analytical model. From the results of the analysis, the general tendency of transmittance and reflectance of electromagnetic wave through composites, foam and foam core sandwich structures was obtained.

  • PDF

Fabrication and forming of metallic sandwich plates with bi-directional corrugated inner structure (두 방향 주름구조를 내부구조로 하는 금속 샌드위치 판재의 제작 및 성형)

  • Seong, D.Y.;Jung, C.G.;Shim, D.S.;Yang, D.Y.;Kim, J.Y.;Kim, J.H.;Chung, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.281-284
    • /
    • 2006
  • Metallic sandwich plates with hi-directional inner structure are important new structures for forming applications. Bi-directional corrugated inner structures with less than 25% of relative density are fabricated by piecewise sectional forming process and then bonded with two face sheets by adhesive bonding. Drawing and U-bending experiments have performed and shown that the radius of curvature of sandwich plates is 75mm and sandwich plates are bended 90 degrees without collapse of inner structures. Bi-directional inner structures are suggested to improve formability of sandwich plates for bending and drawing.

  • PDF

Dynamic Behavior Analysis of a Satellite Having Sandwich Panel by Utilizing Asymptotic Homogenization (Asymptotic 균질화법을 활용한 샌드위치패널로 제작된 위성 구조체의 동적 거동 분석)

  • Cho, Hee Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1203-1210
    • /
    • 2013
  • Korea's first Naro-Science small class satellite was launched by Naro launcher in 2013. The structure of the satellite is mostly composed of aluminum honeycomb and frame. The honeycomb structure is homogenized with asymptotic homogenization method and its mechanical properties were used for the numerical analysis. There have been some difficulties to modeling the honeycomb sandwich panels for FEA. In the present study, the mechanical characteristics of the sandwich panel composite were numerically computed and used for the simulation. This methodology makes it easy to overcome the weakness of modeling of complicated sandwich panels. Both an experiment of vibration test and numerical analyses were conducted simultaneously. The analysis results from the current homogenization were compared with that of experiment. It shows a good agreement on the dynamic responses and certified the reliability of the present methodology when manipulate sandwich panel structure.