• Title/Summary/Keyword: Sand-aggregate ratio

Search Result 203, Processing Time 0.025 seconds

A Study on Basic Properties of Grouting Motars for polymer-Modified preplaced Aggregate Concrete (프리팩트 폴리머 시멘트 콘크리트용 주입 폴리머 시멘트 모르터의 성질에 관한 연구)

  • 이철웅;김완기;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.350-355
    • /
    • 1998
  • Preplaced aggregate concrete in the building fields has recently been used in the partial repair works for damaged reinforced concrete structures, and polymer-modified mortars have been employed as grouting mortars for the preplaced aggregate concrete. The objective of this study is to clear the properties of polymer-modified grouting mortars. Polymer-modified mortars using a polystyrene acrylic(St/Ac) emulsion as grouting mortars for preplaced aggregate concrete are prepared with various mix proportions, and tested for flexural and compressive strengths, adhesion in tension. The flexural strength of emulsion-modified grouting mortars does not give much variation with increasing fly ash replacement for cement and sand-binder ratio. With increasing polymer-binder ratio, the flexural strength and adhesion in tension of St/Ac emulsion-modified grouting mortars increases, become nearly constant or reaches a maximum at a polymer-binder ratio of 5%. From the test results, St/Ac emulsion-modified grouting mortar with a polymer-binder ratio of 5%, a fly ash replacement of 10% for cement and sand-binder ratio of 1.0 is recommended as a grouting mortar for preplaced aggregate concrete.

  • PDF

A Study on the Remicon B/P Application and Properties of High Strength Concrete using Crushed Sand (부순모래를 사용한 고강도콘크리트의 특성 및 레미콘 B/P 적용에 관한 연구)

  • Choi, Se-Jin;Lee, Seong-Yeon;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.1 s.23
    • /
    • pp.57-62
    • /
    • 2007
  • Generally, the strength of concrete depends on factors of materials, mix proportions, compaction, manufacturing methods and curing and so on. And recently, it has increased the using of crushed sand for concrete due to the exhaustion of good natural aggregate. In case of Korea, in 2004, the using ratio of crushed sand occupies about 28% of whole fine aggregate. This is an experimental study to compare and analyze the influence of W/B ratio and replacement ratio of crushed sand on the fluidity and compressive strength of high strength concrete. For this purpose, the mix proportions of concrete according to the W/B (31.5, 27.5, 23.5%) and replacement ratio of crushed sand (0, 20, 40%) was selected. And then air content, slump-flow, a-lot, compressive strength test were performed.

A Study on Application of Waste Sand as Concrete Fine Aggregate (콘크리트용 잔골재로서 폐기물 모래의 적용성에 관한 연구)

  • 윤장길;김효열;임남기
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.15-20
    • /
    • 2004
  • To the development on reusing method of the heat-source waste at Daegu Bisan dyeing-complex, this study is aimed to application of it's crushing material (hereafter waste sand) as concrete fine aggregate. The results are as follows; 1. Flow and unit weight of mortar using waste sand as concrete fine aggregate are decreased. 2. At the results of compressive strength test and bending strength test, mortar using waste sand superior to plain mortar within 80% substitute ratio of waste sand. Because increasing rate of compressive strength is similar through increasing age, waste sand performs as filler's function of no-effect with cement only. 3. At the results of concrete application test, unit weight of concrete using waste sand is similar to plain concrete and compressive strength of concrete is superior to plain likewise the results of mortar test

  • PDF

Analyzing the Engineering Properties of Cement Mortar Using Mixed Aggregate with Reject Ash (혼합골재에 리젝트애시를 프리믹스하여 활용하는 시멘트 모르타르의 공학적 특성 분석)

  • Han, Cheon-Goo;Park, Byung-Moon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.247-252
    • /
    • 2017
  • The aim of this research is the feasibility analysis of the reject ash premixed cement mortar with combined aggregate. Namely, for the combined aggregate with two different qualities of aggregates, a fundamental properties of cement mortar was evaluated depending on various replacing ratios of reject ash(Ri). According to the experimental results, the combined aggregate consisted with low-quality aggregate and sea sand did not change the flow value depending on the reject ash while the combined aggregates consisted with low quality aggregate and sea sand; and consisted exploded debris sand and sea sand the increasing reject ash increased the air content with increased replacing ratio of reject ash. In the case of compressive strength, as the replacing ratio of reject ash was increased, the compressive strength was increased. It is considered that when 5% of reject ash replacing ratio made similar quality of cement mortar with favorable quality aggregate, hence, it can be suggested that 5% replacement of reject ash for desirable fluidity and compressive strength of concrete.

The Effect of W/C Ratio and Chloride on Compressive Strength of Concrete Exposed to High-temperature (물-시멘트비 및 염화물이 고온에 노출된 콘크리트의 압축강도에 미치는 영향)

  • 태순호;이병곤
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.124-128
    • /
    • 1999
  • Product background of cement, sand and coarse aggregate differ from country to country, so that thermal behaviour of concrete make a difference in high temperature. To cope with demand, this paper is a study on compressive strength for W/C 45%, 55% and 65% by using domestic portland cement, Han-river sand, sea sand and crushed-coarse aggregate. As a result, it is shown that it is estimating to the mechanical properties of heated concrete specimens under various W/C ratio.

  • PDF

The Study on the Physical and Strength Properties of Lightweight Concrete by Replacement Ratio of Artificial Lightweight Aggregate (인공경량골재 혼합비율에 따른 경량 콘크리트의 물성 및 강도특성에 관한 연구)

  • Choi, Se-Jin;Kim, Do-Bin;Lee, Kyung-Su;Kim, Young-Uk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.4
    • /
    • pp.313-322
    • /
    • 2019
  • This study is to compare and analyze the physical and strength properties of lightweight concrete using domestic lightweight aggregate by replacement ratio of artificial lightweight fine and coarse aggregate after considering low cement mixture and pre-wetting time. The slump, unit weight, compressive strength and split tensile strength of lightweight concrete with domestic lightweight aggregate were measured. As test results, the slump of lightweight concrete by replacement ratio of lightweight fine aggregate increased as the replacement ratio of lightweight fine aggregate increased. The unit weight of lightweight concrete using 100% of lightweight fine aggregate was about 10.4% lower than that of the lightweight concrete with natural sand. In addition, the unit weight of lightweight concrete by replacement ratio of lightweight coarse aggregate increased with the increase of the ratio of LWG10(5~10mm). The compressive strength of lightweight concrete with lightweight fine and coarse aggregate increased as the replacement ratio of lightweight fine aggregate increased. The compressive strength of lightweight concrete with natural sand and LWG10 was 30 to 31MPa regardless of the replacement ratio of the lightweight coarse aggregate after 7 days.

A Fundamental Study on the Properties of Lightweight Mortar Mixed with Bottom ash and Waste Foundry Sand (괴상석탄재와 폐주물사를 혼입한 경량모르터의 특성에 관한 기초적 연구)

  • 이승한;한형섭;정용욱
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.223-228
    • /
    • 1997
  • In this study, bottom ash, lightweight aggregate, and Expanded Polystyrene was used to lighten the mortar. In order to compensate the reduction of strength caused by lightening, the waste foundry sand produced as solid waste was substituted for fine aggregate. As the device of reducing the ratio of absorption, the procedure of mixture was altered to check the effectiveness of surface coating of porous lightweight aggregate. It was observed over 170kg/$\textrm{cm}^2$ compressive strength at gravity about 1.3, an over 380kg/$\textrm{cm}^2$ at gravity about 1.7. the maximum strength was occurred when 30% of fine aggregate was replaced was replaced with waste foundry sand, and the ratio of absorption was decreased over 10% by changing the procedure of mixture.

  • PDF

An Experimental Study on The Effect of Mixed Sand Used Sea and River Sand as Fine Aggregate of Concrete (해사와 강모래의 혼합재를 사용한 콘크리트에 관한 실험적 연구)

  • 남상일;김문한;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.31-36
    • /
    • 1992
  • This paper, an experimental study on the effect of mixed sand used sea and river as fine aggregate of concrete, is connected with the properties of fresh and hardended concrete and steel corrosion to investigate workability and engineering properties and general steel bar's corrosion of concrete used mixed sand. After analyzing positively fresh and hardenend concrete and ratio of the corrosion area affected by the autoclave cycle, the purpose of this paper is to provide an experimental data developing concrete used mixed sand.

  • PDF

A Study on the Chemical Admixture According to Target Slump Value by Crushed Sand Replacement Rate (부순모래 치환율별 목표슬럼프 값 고정에 따른 화학혼화제의 특성에 관한 연구)

  • Ryu, Hyun-Gi;Cho, Myeong-Ken
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.4
    • /
    • pp.87-93
    • /
    • 2008
  • With an increased use of alternative aggregate due to exhaustion of quality aggregate resources, the amount of used crushed aggregates have been increased and as a result, development of admixture materials has also been improved and its amount of use is increasing from day to day in order to secure quality in concrete. Accordingly, the purpose of this study is to make concrete of good quality by using chemical admixture developed in this study by replacement rate of fine aggregate. At first, susceptibility, compressive strength ratio and length change ratio in both fresh and hardened concrete were evaluated according to corresponding regulation. As for high performance related regulation, APC NO.3 and PC series were going to rule, and as for AE agent regulation, replacement ratio of fine aggregate of high performance chemical admixture was 10:0 and other chemical admixture met quality regulation for AE agent.

An Experimental Study on the Properties of Concrete with Regional Fine Aggregate Properties and Modulation of Fine Aggregate Ratio (지역별 잔골재특성 및 잔골재율 조정에 의한 콘크리트 특성에 관한 실험적 연구)

  • Yoo, Seung-Yeup;Lee, Sang-Rae;Lee, Bum-Suck;Song, Yong-Soon;Kang, Suck-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.465-468
    • /
    • 2008
  • This study investigated the best condition when mixed sand with a river and crushed sand was used though the experiment for the properties of the concrete corresponding to the control of fine aggregate ratio to apply the mixed sand and properties of the fine aggregate at the ready-mixed concrete factory on Yeongnam and Honam. The physical properties of Yeongnam and Honam is satisfied with KS F 2526 and KS F 2527 except fineness modulus and passing amount of 8mm sieve. And, the mixed sand above two types which were incongruent to use individually was being used at each factory, and it was managed in accordance with KS. The flowabillity of the mixture proportion of concrete which was estimated by method of unit volume weight according to the fine aggregate ratio at each factory on Yeongnam and Honam was higher than existing mixture proportion. It was analyzed that the residual water due to decline of the surface area caused by reducing fine aggregate ratio was increased relatively. Accordingly, it was considered that the effect on the economic mixture proportion and improvement of durability might be possible.

  • PDF