• Title/Summary/Keyword: Sand dam

Search Result 122, Processing Time 0.032 seconds

Dataset of Long-term Monitoring on the Change in Hydrology, Channel Morphology, Landscape and Vegetation Along the Naeseong Stream (I) (내성천의 수문, 하도 형태, 경관 및 식생 특성에 관한 장기모니터링 자료 (I))

  • Lee, Chanjoo;Kim, Dong Gu;Ji, Un;Kim, Jisung
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.1
    • /
    • pp.23-33
    • /
    • 2019
  • Naeseong Stream is a sand-bed river that flows through the northern area of Gyeongbuk province. It is characterized by dynamic sandy bedforms developed in response to the seasonal hydrological fluctuation and by its unique riverine landscape called "white river." However, changes including construction of Yeongju Dam from 2010 and the extensive vegetation establishment around 2015 occurred along the Naeseong Stream. This paper aims to analyze climate, hydrology, and water quality as factors and to examine the possibility of channel changes accordingly. The second least precipitation during the last 60 years happened in 2015, which led to the lowest peak discharge in 50 years. The sediment characteristics of Naeseong Stream were not significantly different along the upstream and downstream reaches, but it was confirmed that annual minimum water level of the stream decreased continuously regardless of the dam construction. This suggests that intermittent drought and change in water quality are likely to provide favorable conditions for riparian vegetation establishment and the resulting physical changes have affected riverbed degradation. Therefore, it is necessary to conduct diversified monitoring in connection with river vegetation change in order to analyze the causes of river changes.

Distribution and properties of intertidal Surface Sediments of Kyeonggi Bay, West Coast of Korea (경기만 조간대 표층퇴적물의 분포와 특성)

  • LEE, CHANG-BOK;YOO, HONG-RHYONG;PARK, KYUNG-SOO
    • 한국해양학회지
    • /
    • v.27 no.4
    • /
    • pp.277-289
    • /
    • 1992
  • Kyeonggi Bay, a macrotidal coastal embayment in the Yellow Sea coast of central korea, is fringed by vastly developed tidal flats. About 400 surface sediment samples were collected from the intertidal and subtidal zones of Kyeonggi Bay for a study of the sediment distribution pattern and the surface sediment characteristics of this environment. The kyeonggi Bay surface sediment becomes progressively finer in the shoreward direction, from offshore sand to shoreward silty sand and sandy silt. This shoreward-fining trend is repeated again on the tidal flat and, as a consequence, a grain-size break occurs near the low-water line which separates the intertidal area from the subtidal one. The intertidal and subtidal sediments differ from each other in textural characteristics such as mean grain size and skewness and this can be interpreted to result from differences in hydraulic energy and morphology between the two environments. The mineral and chemical compositions of the Kyeonggi Bay sediments are largely controlled by the sediment grain size. Smectite was nearly absent in the clay mineral assemblage of Kyeonggi Bay sediment. The contents of Co, Cu and Ni were high in the Banweol tidal flat, which suggests a continuous process of accumulation of these metals. the intertidal environment appears to respond rapidly to artificial coastal modifications, the effects of which should be taken into consideration when planning a dam construction or coastal reclamation.

  • PDF

Geomorphic Processes of the Terraces at Lower Reach of Yeongpyeong River in Chugaryeong Rift Valley, Central Korea (추가령 열곡 영평천 하류 단구지형의 형성과정)

  • Lee, Min-Boo;Lee, Gwang-Ryul;Kim, Nam-Shin
    • Journal of the Korean Geographical Society
    • /
    • v.40 no.6 s.111
    • /
    • pp.716-729
    • /
    • 2005
  • In the Yeongpyeong River, one of the branches of Hantan River, there 4 fluvial terraces are identified. During the Quaternary, lava flow from Hantan River had gone 4.5km into upstream Part of the Yeongpyeong River and damed its entrance, and resultantly its lower basin had become a lava-damed paleolake. This study deals with fluvial terrace surface classification, stratigraphic analysis, deposits analysis, and OSL age dating in from Gungpyeongri to Seongdongri in lower reach of Yeongpyeong River, in order to identify Seomorphological Process of the terrace landforms relating to duration of lava-damed paleolake. Terrace surface T4, named Baekeuiri Formation, has been located under Jeongok lava layer to indicate pre-lava river bed. Terrace surfaces T3 and T2 are supposed to be formed during paleolake time, based on $3{\~}4m$ thick sand deposits including pebble and cobble layers, and clay and silt layers intersected with sand ones in nearly horizontal bedding. Terrace T1 is estimated to be formed as post-lake fluvial terrace after dissection of lava dam, based on the more fresh phase of deposits and very low height from present riverbed. The results of the OSL age dating for the T3 deposit layers indicate approximately $33{\~}40ka$, and still lake phase at that time.

Total Phosphorus Removal Rate of a Subsurface-Flow Wetland System Constructed on Floodplain During Its Initial Operation Stage (고수부지에 조성한 수질정화 여과습지의 초기운영단계 총인 제거)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.6
    • /
    • pp.49-55
    • /
    • 2003
  • Total phosphorous removal rate was examined of a subsurface-flow treatment wetland system which was constructed on floodplain in the down reach of the Kwangju Stream in Korea from May to June 2001. Its dimensions were 29 meter in length, 9 meter in width and 0.65 meter in depth. A bottom layer of 45 cm in depth was filled with crushed granite with about 15~30 mm in diameter and a middle layer of 10 cm in depth had pea pebbles with about 10 mm in diameter. An upper layer of 5 cm in depth contained course sand. Reeds(Phragmites australis) were transplanted on the surface of the system. They were dug out of natural wetlands and stems were cut at about 40 cm height from their bottom ends. Water of the Kwangju Stream flowed from a submerged dam into it via a pipe by gravity flow and treated effluent was funneled back into the Stream. The number of reed stems increased from 80 stems/$m^2$ in July 2001 to 136 stems/$m^2$ in September 2001. The hight of stems was 44.2 cm in July 2001 and 75.3 cm in September 2001. The establishment of reeds at early operating stage of the system was good. Volume and water quality of inflow and outflow were investigated from July 2001 through December 2001. The average inflow was 40 $m^3$/day and hydraulic detention time was about 1.5 days. The concentration of total phosphorous n influent and effluent was 0.83 and 0.33 mg/L, respectively. The removal rate of total phosphorous averaged about 60%. The removal efficiency was slightly higher, compared with that of subsurface-flow wetlands operating in North America, whose retention rate of total phosphorous was reported to be about 56%. The good abatement rate could be attributed to sedimentation of particle phosphorous in pores of the media and adsorption of phosphorous to the biofilm developed on the surface of them. Increase of standing density of reeds within a few years will develop root zones which may lead to increment in the phosphorous retention rate.

A Study on Disaster Recognition and Feasibility of Disaster Prevention Based on Place Names (지명을 통해 본 재해인식 및 방재 가능성 탐색)

  • Kim, Sun-Hee;Park, Kyeong
    • Journal of the Korean association of regional geographers
    • /
    • v.16 no.5
    • /
    • pp.457-473
    • /
    • 2010
  • Patterns and regional distribution of disaster-related place names have been analyzed to confirm the recognition and probability of disaster and to explore the possibility of disaster prevention measures. 106 terms and 37,901 place names related to disaster and prevention measures have been collected from the Korean gazetteers "Hanguk Jimyeong Chongnam". Based on this, some conclusions have been drawn: firstly, place names related to the geomorphic processes and prevention measures are more common than any other disasters; secondly, place names related to heavy rain, flooding and drowning are most common. Analysis of the regional distribution pattern shows that disaster-related place names are most common in Jeolla and Gyeongsang Provinces and general place names reflecting environmental concern such as water, sand, plain, rain and dam are distributed evenly throughout the whole country; howe, r, place names such as dumbeong, gureong, yeoul, tan(灘), bangjuk, je(堤), and ji(池) are restricted to the specific region, which shows that place names reflects the locational and toprn sucic ainuations. Case st, anindicates that prevention measures should be focused on tributaries and srill villeys conaid ring that disasters originated from the combination of weather and landform conditions are most common throughout the whole country.

  • PDF

Numerical Modeling of Soil Liquefaction at Slope Site (사면에서 발생하는 액상화 수치해석)

  • Park, Sungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.133-143
    • /
    • 2006
  • A fully coupled effective stress dynamic analysis procedure for modeling seismic liquefaction on slope is presented. An elasto-plastic formulation is used for the constitutive model UBCSAND in which the yield loci are radial lines of constant stress ratio and the flow rule is non-associated. This is incorporated into the 2D version of Fast Lagrangian Analysis of Continua (FLAC) by modifying the existing Mohr-Coulomb model. This numerical procedure is used to simulate centrifuge test data from the Rensselaer Polytechnic Institute (RPI). UBCSAND is first calibrated to cyclic direct simple shear tests performed on Nevada sand. Both pre- and post-liquefaction behaviour is captured. The centrifuge test is then modeled and the predicted accelerations, excess porewater pressures, and displacements are compared with the measurements. The results are shown to be in general agreement. The procedure is currently being used in the design of liquefaction remediation measures for a number of dam, bridge, tunnel, and pipeline projects in Western Canada.

  • PDF

Planting Properties of Herbaceous Plant and Cool-season Grass in Environmentally Friendly Planting Block Using CSG Materials (CSG 재료를 이용한 친환경 식생 블록 내 초본식물 및 한지형 잔디의 식생 특성)

  • Kim, Young-Ik;Yeon, Kyu-Seok;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.33-40
    • /
    • 2010
  • The cemented sand and gravel (CSG) method is a construction technique that adds cement and water to rock-like materials, such as rivered gravel or excavation muck which that can be obtained easily at areas adjacent to dam sites. This study was performed to evaluate the planting properties of herbaceous plant and cool-season grass in CSG blocks that were manufactured by using CSG materials to develop environmentally friendly CSG method. The two types of CSG-0 without cement and CSG-100 with $100\;kg/m^3$ of cement were designed to evaluate compaction, unconfined compressive strength and growth of plants with cement content by using modified E compaction. To analyze growth properties of plants, germination ratio, visual cover, plant height and root length were measured in 4 weeks and 8 weeks after sowing. As the results, the germination regardless kinds of plants started within 5~7days and the germination ratio were in the range of 50~60 %. The visual cover of kinds of plants by visual rating system were in the range of 7~8 and the visual cover of tall fescue and perennial ryegrass was higher than that of lespedeza cuneata. The plant height and root length for tall fescue and perennial ryegrass in 8 weeks after sowing were in the range of 22~26 cm, 12~15 cm and 4~6 cm, 3~5 cm, respectively.

Study on Solidification and Strength of Soft Soils by Using Waste Magnesia-Carbon Powder (폐 Magnesia-Carbon Powder를 이용한 연약지반 고형화 및 강도 증진에 대한연구)

  • Choi, Hun;Song, Myong Shin;Kang, Hyung Ju;Jung, Eui Dam;Kim, Ju Seng
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.35-40
    • /
    • 2011
  • Magnesia-carbon brick is used to refractory material in Converter and/or Ladle furnace for molten steel manufacturing. The rapid growth of steel making industry, molten steel industry is increased. Therefore, growth of molten steel industry lead to make waste magnesia-carbon brick by repair of Converter and/or Ladle furnace. These waste magnesia-carbon brick is abandoned all. Besides, as it is loosely composed of silt and clay including sand falling according to the type of gangue, rainwater inflows and outflows relatively easily, but silt or clay particles absorb water for a long period, weakening ground. This study tried to show that when colluvial soil is solidified using waste magnesia-carbon brick powder as a way to solidify strengthen the rigidity of colluvial soil.

Analysis of Habitat Conditions by Tree Density and Discharge in the Geum River (수목밀도와 유량에 따른 금강의 물리서식처 변화 분석)

  • Mikyoung Choi;Taeun Kang;Changlae Jang
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.250-257
    • /
    • 2023
  • Tree in river have environmental functions such as ecosystem preservation and flood control functions that protect the riverbank. On the other hand, excessive tree development can have the negative effect of fixing the sand bar and reducing the cross-sectional area. Nays2D simulation results performing two flow conditions (average dam operation discharge and two-year frequency discharge) and four tree density conditions (current, zero, low, high tree density) used as input data for PHABSIM to calculate WUA (Weighted Usable Area). The results show that riverbed changes occur more significantly in the zero tree density than presence of trees, which could have a positive impact on the biological habitat environment of Zacco platypus.

Dataset of Long-term Investigation on Change in Hydrology, Channel Morphology, Landscape and Vegetation Along the Naeseong Stream (II) (내성천의 수문, 하도 형태, 경관 및 식생 특성에 관한 장기모니터링 자료 (II))

  • Lee, Chanjoo;Kim, Dong Gu;Hwang, Seung-Yong;Kim, Yongjeon;Jeong, Sangjun;Kim, Sinae;Cho, Hyeongjin
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.1
    • /
    • pp.34-48
    • /
    • 2019
  • Naeseong Stream is a natural sand-bed river that flows through mountainous and cultivated area in northern part of Gyeongbuk province. It had maintained its inherent landscape characterized by white sandbars before 2010s. However, since then changes occurred, which include construction of Yeongju Dam and the extensive vegetation development around 2015. In this study, long-term monitoring was carried out on Naeseong Stream to analyze these changes objectively. This paper aims to provide a dataset of the investigation on channel morphology and vegetation for the period 2012-2018. Methods of investigation include drone/terrestrial photography, LiDAR aerial survey and on-site fieldwork. The main findings are as follows. Vegetation development in the channel of Naeseong Stream began around 1987. Before 2013 it occurred along the downstream reach and since then in the entire reach. Some of the sites where riverbed is covered with vegetation during 2014~2015 were rejuvenated to bare bars due to the floods afterwards, but woody vegetation was established in many sites. Bed changes occurred due to deposition of sediment on the vegetated surfaces. Though Naeseong Stream has maintained its substantial sand-bed characteristics, there has been a slight tendency in bed material coarsening. Riverbed degradation at the thalweg was observed in the surveyed cross sections. Considering all the results together with the hydrological characteristics mentioned in the precedent paper (I), it is thought that the change in vegetation and landscape along Naeseong Stream was mainly due to decrease of flow. The effect of Yeongju Dam on the change of the riverbed degradation was briefly discussed as well.