• Title/Summary/Keyword: Sand addition

Search Result 702, Processing Time 0.032 seconds

Effect of Shear Rate on Strength of Non-cemented and Cemented Sand in Laboratory Testing (실내시험 시 재하속도가 미고결 및 고결 모래의 강도에 미치는 영향)

  • Moon, Hong Duk;Kim, Jeong Suk;Woo, Seung-Wook;Tran, Dong-Kiem-Lam;Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.23-36
    • /
    • 2021
  • In this paper, the effect of shear rate on internal friction angle and unconfined compressive strength of non-cemented and cemented sand was investigated. A dry Jumunjin sand was prepared at loose, medium, and dense conditions with a relative density of 40, 60 and 80%. Then, series of direct shear tests were conducted at shear rates of 0.32, 0.64, and 2.54 mm/min. In addition, a cemented sand with cement ratio of 8% and 12% was compacted into a cylindrical specimen with 50 mm in diameter and 100 mm in height. Unconfined compression tests on the cemented sand were performed with various shear rates such as 0.1, 0.5, 1, 5 and 10%/min. Regardless of a degree of cementation, the unconfined compressive strength of the cemented sand and the angle of internal friction of the non-cemented sand tended to increase as the shear rate increased. For the non-cemented sand, the angle of internal friction increased by 4° at maximum as the shear rate increased. The unconfined compressive strength of the cemented sand also increased as the shear rate increased. However, its increasing pattern declined after the standard shear rate (1 mm/min). A discrete element method was also used to analyze the crack initiation and its development for the cemented sand with shear rate. Numerical results of unconfined compressive strength and failure pattern were similar to the experimental results.

Design and Implementation of Sandcastle Play Guide Application using Artificial Intelligence and Augmented Reality (인공지능과 증강현실 기술을 이용한 모래성 놀이 가이드 애플리케이션 설계 및 구현)

  • Ryu, Jeeseung;Jang, Seungwoo;Mun, Yujeong;Lee, Jungjin
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.3
    • /
    • pp.79-89
    • /
    • 2022
  • With the popularity and the advanced graphics hardware technology of mobile devices, various mobile applications that help children with physical activities have been studied. This paper presents SandUp, a mobile application that guides the play of building sand castles using artificial intelligence and augmented reality(AR) technology. In the process of building the sandcastle, children can interactively explore the target virtual sandcastle through the smartphone display using AR technology. In addition, to help children complete the sandcastle, SandUp informs the sand shape and task required step by step and provides visual and auditory feedback while recognizing progress in real-time using the phone's camera and deep learning classification. We prototyped our SandUp app using Flutter and TensorFlow Lite. To evaluate the usability and effectiveness of the proposed SandUp, we conducted a questionnaire survey on 50 adults and a user study on 20 children aged 4~7 years. The survey results showed that SandUp effectively helps build the sandcastle with proper interactive guidance. Based on the results from the user study on children and feedback from their parents, we also derived usability issues that can be further improved and suggested future research directions.

Unconfined Compressive Strength of Cemented Sand Reinforced with Short Fibers (단섬유를 사용한 시멘트 혼합토의 일축압축강도 특성)

  • Park, Sung-Sik;Kim, Young-Su;Choi, Sun-Gyu;Shin, Shi-Eon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4C
    • /
    • pp.213-220
    • /
    • 2008
  • A study on cemented sand reinforced with short fibers was carried out to improve its unconfined compressive strength and brittle behavior. Nak-dong River sand was mixed with Portland cement and polyvinyl alcohol (PVA) fibers. A PVA fiber widely used for concrete reinforcement is randomly distributed into cemented sand. Nak-dong River sand, cement and fibers with optimum water content were compacted in 5 layers and then cured for 7 days. The effect of fiber reinforcement rather than cementation was emphasized by using a small amount of cement. Weakly cemented sand with a cement/sand ratio less than 8% was fiber-reinforced with different fiber ratios and tested for unconfined compression tests. The effect of fiber ratio and cement ratio on unconfined compressive strength was investigated. Fiber-reinforced cemented sand with 2% cement ratio showed up to six times strength to non-reinforced cemented sand. Because of ductile behavior of fiber-reinforced specimens, an axial strain at peak stress of specimens with 2% cement ratio increases up to 7% as a fiber ratio increases. The effect of 1% fiber addition into 2% cemented sand on friction angle and cohesion was analyzed separately. When the fiber reinforcement is related to friction angle increase, the 8% of applied stress transferred to 1% fibers within specimens.

Fundamental Study on Recycling Waste Foundry Sand as Fine Aggregate for Concrete (폐주물사를 콘크리트용 잔골재로 재활용하기 위한 기초연구)

  • 문한영;최연왕;송용규;신동구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.281-286
    • /
    • 2001
  • The development of automobile, vessel, rail road, and machine industry leads increase of foundry production used as their components, which cause a by-product, waste foundry sand (WFS). The amount of the WFS produced in Korea is over 900,000 ton a year, but most WFS buries itself and only 5~6% WFS is recycled as a material in construction materials. In this study, WFS is used as a fine aggregate for concrete. Five types of concretes aimed at the specified strength of 240$\pm$10 kgf/$cm^{2}$ , air contents of 4.5$\pm$1% and slump of 12$\pm$1.5cm were mixed with washed coarse seashore sand(WFS) in which salt was removed and then optimum mix proportion of concrete was determined. Moreover, basic properties such as setting time, workability, bleeding and slump loss of the fresh concrete with WFS were tested and compared with those of the concrete mixed without WFS. In .addition, both compressive strength of hardened concrete at each ages and tensile strength of it at the age of 28 days were measured and discussed.

  • PDF

The Application of Converts Slag for Vertical Drains (제강슬레그의 연직배수재로서의 활용에 관한 연구)

  • 김용수;정승용;한기현;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.623-630
    • /
    • 2000
  • In this study, it was to investigate the possibility to use the converts slag, by product in producing steel as a substitute material with sand that is used fur a civil construction materials, in developing techniques to use converts slag to improve soft clay ground. To do this, it was investigated the physical and mechanical properties of the converts slag as a civil construction material. For this, cylindrical cell consolidation with a single vertical drains and large scale soil box test were performed. Through large scale soil box test, the applicability of the converts slag to the present vertical drain techniques which is dependent on sand and plastic drains was studied. As a result of that, it was found that the shape of inserted drains was maintained after completing a consolidation process of a soft clay with slag drains. In addition, we could find that the slag drains showed the similar results with sand drains in soft clay by analyzing the effect of acceleration of consolidation.

  • PDF

The Effect of Graphite Addition and Pouring Temperature on the Coating State in Vaccum Process (감압조형시 흑연첨가 및 주입온도가 피복상태에 미치는 영향)

  • 조성준
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.544-551
    • /
    • 1997
  • We tried to improve the coating capability of the coating material using an additive(hexagonal cystalline graphite) of 2%, 3%, 4% and 6% under various pouring temperature for the easy isolation of sand and coating material from the final product. As a result in case of using a 2% and 3% additive generally no burning state has been occurred under the low pouring temperature, but it has been gradually increased with the pouring temperature. On the other hand in case of using a 4% and 6% additive there has been no burning state through out the whole pouring temperature. From this result we could see that the best state of the final product without sand and coating material could generally be obtained if 4% and/or 6% of the crystalline graphite and the pouring temperature of 140$0^{\circ}C$$\pm$5$^{\circ}C$ would be used.

  • PDF

An Environmentally Friendly Soil Improvement Technology with Microorganism

  • Kim, Daehyeon;Park, Kyungho
    • International Journal of Railway
    • /
    • v.6 no.3
    • /
    • pp.90-94
    • /
    • 2013
  • Cement or lime is generally used to improve the strength of soil. However, bacteria were utilized to produce cementation of loose soils in this study. The microo rganism called Bacillus, and $CaCl_2$ was introduced into loose sand and soft silt and $CaCO_3$ in the voids of soil particles were produced, leading to cementation of soil particles. In this study, loose sand and soft silt typically encountered in Korea were bio-treated with 3 types of bacteria concentration. The cementation (or calcite precipitation) in the soil particles induced by the high concentration bacteria treatment was investigated at 7 days after curing. Based on the results of Scanning Electron Microscope (SEM) tests and EDX analyses, high concentration bacteria treatment for loose sand was observed to produce noticeable amount of $CaCO_3$, implying a significant cementation of soil particles. It was observed that higher calcium carbonate depositions were observed in poorly graded distribution as compared to well graded distribution. In addition, effectiveness of biogrouting has also been found to be feasible by bio-treatment without any cementing agent.

An Experimental Study on Chemical and Autogenous Shrinkage of Cement-paste and Mortar (시멘트페이스트와 모르타르의 화학 수축과 자기수축 실험연구)

  • 조경래;박신일;최진영;전철송;임병호;김화중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.687-692
    • /
    • 2002
  • The chemical shrinkage and the autogenous shrinkage have been determined experimentally for cement pastes incorporating different W/C ratio and different amount of the following addition: silica fume, fly ash and sand. The measurement method of the chemical shrinkage and autogenous shrinkage both were the volumetric technique. The silica fume has a effect of increasing the autogenous shrinkage while have a minor effect on the chemical shrinkage. The addition of fly-ash and sand both decreased the amount of chemical shrinkage and autogenous shrinkage.

  • PDF

Evaluation of Fertilizer Additions to Stimulate Oil Biodegradation in Sand Seashore Mesocosms

  • CHOI, SUNG-CHAN;KAE KYOUNG KWON;JAE HAK SOHN;SANG-JIN KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.431-436
    • /
    • 2002
  • Effects of fertilizer additions for oil degradation were examined in sand seashore mesocosms. Within 37 days, up to $85\%$ removal was achieved by the addition of slow-release type fertilizer (SRF) with the initial degradation rate of 423.3 mg oil $(kg sand)^-1\;day^-1$. The removal was mostly of biological origin based on the changes of $C_17$ /pristane and $C_18$/phytane ratios from 2.60 to 0.81 and from 3.55 to 1.29, respectively. The addition of oleophilic fertilizer (Inipol EAP22) was less effective and resulted in the removal of $64\%$ of the added oil ($3\%$, v/v) with a lower initial degradation rate. Petroleum-degrading bacteria had achieved a value of $1{\times}10^8$ CFU $(g sand)^-1$ at Day 3 and this peak exactly coincided with the initial degradation in the SRF-treated mesocosm. In this mesocosm, surface tension values were decreased drastically during Days 3 and 8, suggesting that microbially-produced surface-active agents actively enhanced the oil degradation rate and cell proliferation. Although the Inipol-treated mesocosm appeared to show significantly enhanced oil degradation compared to that of the untreated control mesocosm, Inipol was found to be less effective than SRF in enhancing a true oil-degrader when compared under similar experimental conditions.

Prevention of Precipitation in Sand Lance Fish Sauce by Chelating Agents

  • Moon, Kyung-Whan;Kim, Seong-Yeong;Kim, Jin-Man;Chang, Un-Jae;Bae, Song-Hwan;Suh, Hyung-Joo
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.114-117
    • /
    • 2008
  • Chelating agents to sand lance fish sauce for the prevention of precipitate formation were applied. The precipitates consisted of crude protein (74.4%), ash (18.7%), and other components (6.9%). Sand lance sauce was mainly composed of glutamic acid (3.69 mg/g), alanine (2.96 mg/g), and lysine (2.64 mg/g). However, there was an increase in the amount of hydrophobic amino acids, phenylalanine, isoleucine, and leucine, in the precipitates. Sodium ions were not detected in the precipitate; rather, the main elements were Mg ($1.98{\times}10^4\;{\mu}g/g)$, K ($1.36{\times}10^4\;{\mu}g/g)$, and Ca ($6.66{\times}10^2\;{\mu}g/g)$. In HPLC analysis, fish sauce was composed of 2 main peaks with molecular weights of 85.5 and 528.4 Da, respectively. However, the precipitate contained one peak with a molecular weight of 1,513.5 Da. The addition of 0.2% malic acid and citric acid caused 55 and 70% prevention of the precipitate, respectively. Citric acid was the most effective chelating agent and efficiently prevented precipitation in the fish sauce.