• 제목/요약/키워드: Salt resistant protein

검색결과 13건 처리시간 0.023초

소금민감성유전자와 비만 (Salt-sensitive genes and their relation to obesity)

  • 전용필;이명숙
    • Journal of Nutrition and Health
    • /
    • 제50권3호
    • /
    • pp.217-224
    • /
    • 2017
  • Purpose: Although it is well known thatmortality and morbidity due to cardiovascular diseases are higher in salt-sensitive subjects than in salt-resistant subjects, their underlying mechanisms related to obesity remain unclear. Here, we focused on salt-sensitive gene variants unrelated to monogenic obesity that interacted with sodium intake in humans. Methods: This review was written based on the modified $3^rd$ step of Khans' systematic review. Instead of the literature, subject genes were based on candidate genes screened from our preliminary Genome-Wide Association Study (GWAS). Finally, literature related to five genes strongly associated with salt sensitivity were analyzed to elucidate the mechanism of obesity. Results: Salt sensitivity is a measure of how blood pressure responds to salt intake, and people are either salt-sensitive or salt-resistant. Otherwise, dietary sodium restriction may not be beneficial for everyone since salt sensitivity may be associated with inherited susceptibility. According to our previous GWAS studies, 10 candidate genes and 11 single nucleotide polymorphisms (SNPs) associated with salt sensitivity were suggested, including angiotensin converting enzyme (ACE), ${\alpha}$-adducin1 (ADD1), angiotensinogen (AGT), cytochrome P450 family 11-subfamily ${\beta}$-2 ($CYP11{\beta}$-2), epithelial sodium channel (ENaC), G-protein b3 subunit (GNB3), G protein-coupled receptor kinases type 4 (GRK4 A142V, GRK4 A486V), $11{\beta}$-hydroxysteroid dehydrogenase type-2 (HSD $11{\beta}$-2), neural precursor cell-expressed developmentally down regulated 4 like (NEDD4L),and solute carrier family 12(sodium/chloride transporters)-member 3 (SLC 12A3). We found that polymorphisms of salt-sensitive genes such as ACE, $CYP11{\beta}$-2, GRK4, SLC12A3, and GNB3 may be positively associated with human obesity. Conclusion: Despite gender, ethnic, and age differences in genetics studies, hypertensive obese children and adults who are carriers of specific salt-sensitive genes are recommended to reduce their sodium intake. We believe that our findings can contribute to the prevention of early-onset of chronic diseases in obese children by facilitating personalized diet-management of obesity from childhood to adulthood.

Characterization of Novel Salt-Tolerant Esterase Isolated from the Marine Bacterium Alteromonas sp. 39-G1

  • Won, Seok-Jae;Jeong, Han Byeol;Kim, Hyung-Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권2호
    • /
    • pp.216-225
    • /
    • 2020
  • An esterase gene, estA1, was cloned from Alteromonas sp. 39-G1 isolated from the Beaufort Sea. The gene is composed of 1,140 nucleotides and codes for a 41,190 Da protein containing 379 amino acids. As a result of a BLAST search, the protein sequence of esterase EstA1 was found to be identical to Alteromonas sp. esterase (GenBank: PHS53692). As far as we know, no research on this enzyme has yet been conducted. Phylogenetic analysis showed that esterase EstA1 was a member of the bacterial lipolytic enzyme family IV (hormone sensitive lipases). Two deletion mutants (Δ20 and Δ54) of the esterase EstA1 were produced in Escherichia coli BL21 (DE3) cells with part of the N-terminal of the protein removed and His-tag attached to the C-terminal. These enzymes exhibited the highest activity toward p-nitrophenyl (pNP) acetate (C2) and had little or no activity towards pNP-esters with acyl chains longer than C6. Their optimum temperature and pH of the catalytic activity were 45℃ and pH 8.0, respectively. As the NaCl concentration increased, their enzyme activities continued to increase and the highest enzyme activities were measured in 5 M NaCl. These enzymes were found to be stable for up to 8 h in the concentration of 3-5 M NaCl. Moreover, they have been found to be stable for various metal ions, detergents and organic solvents. These salt-tolerant and chemical-resistant properties suggest that the enzyme esterase EstA1 is both academically and industrially useful.

The stimulatory effect of CaCl2, NaCl and NH4NO3 salts on the ssDNA-binding activity of RecA depends on nucleotide cofactor and buffer pH

  • Ziemienowicz, Alicja;Rahavi, Seyed Mohammad Reza;Kovalchuk, Igor
    • BMB Reports
    • /
    • 제44권5호
    • /
    • pp.341-346
    • /
    • 2011
  • The single-stranded DNA binding activity of the Escherichia coli RecA protein is crucial for homologous recombination to occur. This and other biochemical activities of ssDNA binding proteins may be affected by various factors. In this study, we analyzed the effect of $CaCl_2$, NaCl and $NH_4NO_3$ salts in combination with the pH and nucleotide cofactor effect on the ssDNA-binding activity of RecA. The studies revealed that, in addition to the inhibitory effect, these salts exert also a stimulatory effect on RecA. These effects occur only under very strict conditions, and the presence or absence and the type of nucleotide cofactor play here a major role. It was observed that in contrast to ATP, ATP${\gamma}$S prevented the inhibitory effect of NaCl and $NH_4NO_3$, even at very high salt concentration. These results indicate that ATP${\gamma}$S most likely stabilizes the structure of RecA required for DNA binding, making it resistant to high salt concentrations.

A Simple and Rapid Methicillin-Resistant Staphylococcus aureus (MRSA) Screening Test Using a Mannose-Binding Lectin (MBL)-Conjugated Gold Nanoparticle Probe

  • So Yeon Yi;Jinyoung Jeong;Wang Sik Lee;Jungsun Kwon;Kyungah Yoon;Kyoungsook Park
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권5호
    • /
    • pp.698-705
    • /
    • 2023
  • Rapid diagnosis of methicillin-resistant Staphylococcus aureus (MRSA) is essential for guiding clinical treatment and preventing the spread of MRSA infections. Herein, we present a simple and rapid MRSA screening test based on the aggregation effect of mannose-binding lectin (MBL)-conjugated gold nanoparticles (AuNP), called the MRSA probe. Recombinant MBL protein is a member of the lectin family and part of the innate immune system. It can recognize wall teichoic acid (WTA) on the membrane of MRSA more specifically than that of methicillin-sensitive Staphylococcus aureus (MSSA) under optimized salt conditions. Thus, the MRSA probe can selectively bind to MRSA, and the aggregation of the probes on the surface of the target bacteria can be detected and analyzed by the naked eye within 5 min. To demonstrate the suitability of the method for real-world application, we tested 40 clinical S. aureus isolates (including 20 MRSA specimens) and recorded a sensitivity of 100%. In conclusion, the MRSA probe-based screening test with its excellent sensitivity has the potential for successful application in the microbiology laboratory.

배추에서 염 저항성 관련 유전자, BrSSR의 기능 검정 및 발현 네트워크 분석 (Characterization and Gene Co-expression Network Analysis of a Salt Tolerance-related Gene, BrSSR, in Brassica rapa)

  • 유재경;이기호;박지현;박영두
    • 원예과학기술지
    • /
    • 제32권6호
    • /
    • pp.845-852
    • /
    • 2014
  • 다양한 비생물적 스트레스 중 토양 염 집적은 식물의 광합성 효율, 생장 및 수확량의 감소를 초래한다. 최근 염 저항성 향상을 위한 많은 유전자들이 보고되고 있다. 본 연구의 목적은 형질전환 배추를 이용하여 아직 기능이 밝혀져 있지 않지만 완전장이 보고된 Brassica rapa Salt Stress Resistance(BrSSR) 유전자의 기능을 검정하는 것이다. BrSSR의 생리적 역할을 분석하기 위해, BrSSR의 과발현 vector인 pSL94 vector를 이용하여 내혼계 배추('CT001')를 형질전환하였다. Quantitative real-time RT-PCR 분석에서 형질전환체의 BrSSR 발현량은 대조군 대비 2.59배까지 증가하였다. 한편, 염 처리 후 표현형 분석에서 BrSSR이 과발현된 형질전환체들이 정상적인 생장을 보여줌으로써 염 스트레스에 내성을 가지는 것을 확인할 수 있었다. Microarray 분석을 통해 구축된 염 스트레스 저항성 관련 유전자들의 발현 네트워크 상에서 BrSSR은 기존에 염 저항성 관련 유전자로 보고되어 있는 ERD15(AT2G41430), protein containing PAM2(AT4G14270), GABA-T(AT3G22200)와 매우 밀접하게 연결되어 있는 것으로 분석되었다. 위 결과들을 바탕으로 BrSSR은 염 스트레스 발생 시 식물의 생장 및 저항성에 관련된 중요한 역할을 하는 것으로 판단된다.

Heat stress protection in Aspen sp1 transgenic Arabidopsis thaliana

  • Zhu, Bo;Xiong, Ai-Sheng;Peng, Ri-He;Xu, Jing;Zhou, Jun;Xu, Jin-Tao;Jin, Xiao-Fen;Zhang, Yang;Hou, Xi-Lin;Yao, Quan-Hong
    • BMB Reports
    • /
    • 제41권5호
    • /
    • pp.382-387
    • /
    • 2008
  • It is known that the stable protein 1 (SP1) detected in aspen plants remains soluble upon boiling and that sp1 expression in transgenic aspen is resistant to salt stress. Presently, we analyzed the effect of expression of SP1 in Arabidopsis thaliana plants and their response to high temperature stress. After $45^{\circ}C$ for 16 h, relative to wild type plants, sp1 transgenic plants exhibited stronger growth and were better in several physiological properties including chlorophyII, chlorophyII fluorescence, water content, proline content, and malondialdehyde content. These preliminarily results suggest that the over-expression of SP1 may notably enhance heat-tolerant level of transgenic A. thaliana plants.

현사시나무에서 Formate Dehydrogenase cDNA의 분리와 특성 구명 (Isolation and Characterization of a Formate Dehydrogenase cDNA in Poplar (Populus alba ${\times}$ P. glandulosa))

  • 배은경;이효신;이재순;최영임;윤서경;어수형
    • 한국산림과학회지
    • /
    • 제102권3호
    • /
    • pp.331-337
    • /
    • 2013
  • Formate dehydrogenase(FDH)는 포름산이온을 이산화탄소로 산화하는 반응을 촉매하는 효소로서, 건조와 저온 그리고 병원균 감염 등에 반응하는 스트레스 단백질로 알려져 있다. 본 연구에서는 현사시나무에서 FDH의 cDNA를 분리하여 구조와 발현 특성 등을 조사하였다. 현사시나무의 FDH cDNA(PagFDH1)는 1,499개의 염기쌍으로 이루어져 있으며, 388개의 아미노산으로 구성되는 예상 분자량 42.5 kDa의 단백질을 암호화한다. PagFDH1 단백질은 미토콘드리아 신호펩티드와 $NAD^+$ 결합부위를 가지고 있다. PagFDH1은 현사시나무의 염색체에 1 copy가 존재하며, 배양세포에서 가장 높게 발현되고 뿌리와 꽃 그리고 잎에서도 발현되었다. 현탁배양세포의 생장주기에서 유도기와 초기 지수생장기에 높게 발현하였다. PagFDH1은 건조와 염 스트레스에 반응하여 ABA를 경유한 신호전달경로에 의해 발현이 유도되는 것으로 나타났다. 본 연구결과는 FDH 유전자의 도입과 발현조절을 통한 환경 스트레스 저항성나무의 개발에 도움을 줄 것으로 생각된다.

Isolation of a novel dehydrin gene from Codonopsis lanceolata and analysis of its response to abiotic stresses

  • Pulla, Rama Krishna;Kim, Yu-Jin;Kim, Myung-Kyum;Senthil, Kalai Selvi;In, Jun-Gyo;Yang, Deok-Chun
    • BMB Reports
    • /
    • 제41권4호
    • /
    • pp.338-343
    • /
    • 2008
  • Dehydrins (DHNs) compose a family of intrinsically unstructured proteins that have high water solubility and accumulate during late seed development at low temperature or in water-deficit conditions. They are believed to play a protective role in freezing and drought-tolerance in plants. A full-length cDNA encoding DHN (designated as ClDhn) was isolated from an oriental medicinal plant Codonopsis lanceolata, which has been used widely in Asia for its anticancer and anti-inflammatory properties. The full-length cDNA of ClDhn was 813 bp and contained a 477 bp open reading frame (ORF) encoding a polypeptide of 159 amino acids. Deduced ClDhn protein had high similarities with other plant DHNs. RT-PCR analysis showed that different abiotic stresses such as salt, wounding, chilling and light, triggered a significant induction of ClDhn at different time points within 4-48 hrs post-treatment. This study revealed that ClDhn assisted C. lanceolata in becoming resistant to dehydration.

Novel Biomarkers for Prediction of Response to Preoperative Systemic Therapies in Gastric Cancer

  • Cavaliere, Alessandro;Merz, Valeria;Casalino, Simona;Zecchetto, Camilla;Simionato, Francesca;Salt, Hayley Louise;Contarelli, Serena;Santoro, Raffaela;Melisi, Davide
    • Journal of Gastric Cancer
    • /
    • 제19권4호
    • /
    • pp.375-392
    • /
    • 2019
  • Preoperative chemo- and radiotherapeutic strategies followed by surgery are currently a standard approach for treating locally advanced gastric and esophagogastric junction cancer in Western countries. However, in a large number of cases, the tumor is extremely resistant to these treatments and the patients are exposed to unnecessary toxicity and delayed surgical therapy. The current clinical trials evaluating the combination of preoperative systemic therapies with modern targeted and immunotherapeutic agents represent a unique opportunity for identifying predictive biomarkers of response to select patients that would benefit the most from these treatments. However, it is of utmost importance that these potential biomarkers are corroborated by extensive preclinical and translational research. The aim of this review article is to present the most promising biomarkers of response to classic chemotherapeutic, anti-HER2, antiangiogenic, and immunotherapeutic agents that can be potentially useful for personalized preoperative systemic therapies in gastric cancer patients.